

A nonlinear subgrid drift velocity model for filtered drag in turbulent fluidization

F. Dabbagh¹ and S. Schneiderbauer^{1,2}

¹ Christian Doppler Laboratory for Multi-Scale Modeling of Multiphase Processes,
 Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria.
 firas.dabbagh@jku.at.

² Department of Particulate Flow Modelling,
 Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria.
 simon.schneiderbauer@jku.at.

Keywords: *Turbulent fluidization, Two-Fluid Model, clusters-induced Turbulence*

Small-scale turbulent topologies get highly complicated when merging into multiphase flows. For instance, when a turbulent flow pulls small inertia particles in a particle-laden turbulence, the particles at low mass loading drain kinetic energy from the carrier fluid and produce a kind of relaminarization. While, at significantly large mass loading, the particles get self-organized into dense clusters triggering a drag production and momentum feedback on the carrier-fluid, and enhance its turbulent kinetic energy as *cluster-induced turbulence (CIT)*. This drag production or CIT is relatively expressed by the subgrid-scale (SGS) drift velocity \mathbf{v}_d on mesoscale description (*i.e.* spatially filtered coarse grid). Considering a gas-particles turbulent fluidization simulated in the framework of two-fluid model (TFM); the most classical closure for \mathbf{v}_d assumes that \mathbf{v}_d^{model} is linearly aligned against the resolved gradient of solid volume fraction $\bar{\epsilon}_s$, with a scalar turbulent dispersion D_{tg} , *i.e.* $\mathbf{v}_d^{Bur} \sim D_{tg} \nabla \bar{\epsilon}_s / (\bar{\epsilon}_s \bar{\epsilon}_g)$ [1], where $\bar{\epsilon}_g$ is the gas-phase volume fraction. Recently and on the base of our novel analysis of small-scale structures in dense turbulent fluidization [2], the linear model \mathbf{v}_d^{Bur} has revealed a clear misalignment with the actual \mathbf{v}_d^A due to the (strong tendency) boundary-layer-like turbulence on the gas-phase. This leads us in the current work to derive and explore the behaviour of a new proper nonlinear model basing on non-negative clipping (regularized) rate-of-strain gas-phase tensor and solids gradient, *i.e.* $\propto \bar{\mathbf{S}}_g^+ \nabla \bar{\epsilon}_s / (\bar{\epsilon}_s \bar{\epsilon}_g)$, where, $\bar{\mathbf{S}}_g = 1/2(\bar{\mathbf{G}}_g + \bar{\mathbf{G}}_g^t)$, and $\bar{\mathbf{G}}_g = \bar{\epsilon}_s [\nabla \bar{\mathbf{u}}_s - 1/3 \text{tr}(\nabla \bar{\mathbf{u}}_s) \mathbf{I}]$ (similar to the framework of LES models).

REFERENCES

- [1] A. D. Burns, T. Frank, I. Hamill and J. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, *5th International Conference on Multiphase Flow*. Proceeding CD-ROM, paper No. 392, pp. 1–17, 2004.
- [2] F. Dabbagh and S. Schneiderbauer, Small-scale flow topologies, pseudo-turbulence, and impact on filtered drag models in turbulent fluidization. *Physical Review Fluids*, Vol. **6**, 074301, 2021.