

A UNIFIED ANALYSIS FRAMEWORK OF NAVIER-STOKES CAHN-HILLIARD MODELS WITH DIFFERENT DENSITIES

Marco ten Eikelder^{1*}, Kris van der Zee², Ido Akkerman³ and Dominik Schillinger¹

¹ Department of Civil and Environmental Engineering, Technische Universität Darmstadt, Franziska-Braun-Straße 3 64287 Darmstadt, Germany, marco_ten_eikelder@gmail.com, schillinger@mechanik.tu-darmstadt.de

² School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom, kg.vanderZee@nottingham.ac.uk

³ Department of Mechanical, Maritime and Materials Engineering, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands, i.akkerman@tudelft.nl

Keywords: *Navier-Stokes Cahn-Hilliard equations, mixture theory, thermodynamics.*

Over the last decades, many diffuse-interface Navier-Stokes Cahn-Hilliard (NSCH) models with different have appeared, for example see [1, 3]. All these models claim to describe the same physical phenomena but are distinct from one another. In this talk [2] we bring these models together by laying down a unified framework of NSCH models. The framework is based on the following three principles: (1) there is only one system of balance laws based on continuum mixture theory that describes the physical model, (2) there is only one natural energy-dissipation law that leads to quasi-incompressible NSCH models, (3) variations between the models only appear in the constitutive choices.

Furthermore, we show the mobility to be of degenerate type and reveal that a non-degenerate mobility leads to incompatibility in the single-fluid regime. Moreover, we aim to highlight and rectify inconsistencies of existing volume-averaged velocity based models with respect to mixture theory.

REFERENCES

- [1] H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, *Mathematical Models and Methods in Applied Sciences*, Vol. **22**, pp. 1150013, 2012.
- [2] M.F.P. ten Eikelder, K.G. van der Zee, I. Akkerman, and D. Schillinger, Unified Analysis of Navier-Stokes Cahn-Hilliard Models with Non-Matching Densities. arxiv.org/abs/2110.11912, 2021.
- [3] J.S. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological transitions, *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences*, Vol **454**, pp. 2617–2654, 1998.