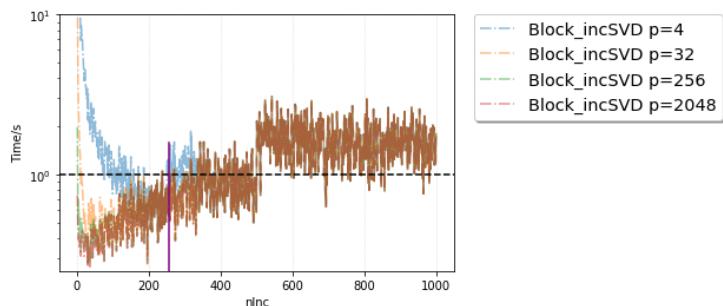


A strategy to optimal block-incremental singular value decomposition for unsteady high-fidelity simulation data


Xiaodong Li¹, Steven Hulshoff² and Stefan Hickel³

Delft University of Technology, Kluyverweg 2, 2629 HS Delft, Netherlands

¹ X.Li-12@tudelft.nl, ² SJHulshoff@tudelft.nl, ³ S.Hickel@tudelft.nl

Keywords: *Computational Fluid Dynamics, Singular Value Decomposition, Incremental SVD, high-dimensional data*

Singular value decomposition (SVD) has been widely applied to achieve data-based model analyses such as proper orthogonal decomposition (POD) or dynamic mode decomposition (DMD). The increasing amount of data from high-fidelity simulations poses the storage challenge for these modal analyses. The offline SVD approach, which needs to access the entire high-dimensional dataset at once, leads to prohibitive memory cost to process this massive data. The incremental SVD [1] was proposed to overcome this difficulty by splitting the dataset into smaller subsets and accumulating the SVD analysis on the fly. One-column incremental SVD [2] is able to effectively complete the modal analysis online, but this online method is much slower than offline SVD. We herein present a strategy to obtain an optimal updating number for block-incremental SVD with balancing the computing time and memory cost simultaneously. This is demonstrated using 2D randomized matrices. A criterion is defined to find the optimal value, and the effectiveness is validated on an engineering situation where a series of datasets need to be analyzed, implying it would be useful for applications in practice.

Figure 1: The time ratio between the block-incremental SVD and onlne SVD, with different incremental number (nInc) for the data with 4, 32, 256 and 2048 sets of a 1000-by-1000 matrix.

REFERENCES

- [1] M. Brand, Incremental singular value decomposition of uncertain data with missing values. in *European Conference on Computer Vision*, pp. 707–720, Springer, Berlin, Heidelberg, 2002.
- [2] H. Fareed, J.R. Singler, Y. Zhang and J. Shen, Incremental proper orthogonal decomposition for PDE simulation data.