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Lifting surfaces, such as aircraft wings, hydrofoils, propeller blades, and turbine blades
are critical components in many engineering systems because much of the overall perfor-
mance hinges on those components. The design of lifting surfaces is challenging because
simulating the physics involves nonlinear aerodynamics and fluid-structure interaction.
There has been much progress in the design of lifting surfaces based on computational
fluid dynamics (CFD) and its coupling to computational structural mechanics (CSM)
models. Accuracy and speed are two desirable characteristics of physics modeling, but
this is not enough for design optimization [I]. Hundreds of shape variables are required
to enable the shape optimization of lifting surfaces [2]. Currently, gradient-based opti-
mization algorithms combined with adjoint methods to efficiently compute the gradients
of the physics models provide the most promising approach for performing lifting sur-
face design optimization [3]. The coupled-adjoint method has emerged as a promising
approach to compute the gradients of multiphysics models, including fluid-structure in-
teraction simulations. However, there are several remaining challenges for the widespread
industrial application of these state-of-the-art methods. This talk will summarize the
state-of-art in lifting surface design optimization approaches. Topics will include adjoint
method implementation [4] [5, [6], coupled-adjoint methods and frameworks [7, 8, 9]. In
addition to implementation, current theoretical challenges include considering dynamic
and unsteady physics [10, 11, 12] including flutter and limit cycle oscillations [13]. There
are also challenges more directly related to industrial applications, such as integration
with CAD [14] 5] [16], existing commercial software [I7], and considering practical de-
sign constraints [18] [19]. We will give examples from a wide variety of applications such
as the design of aircraft wings [7), 20], hydrofoils [21l 22], turbomachinery [23], 24], wind
turbines [25], and propellers [20], 27].
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