

A Computational Framework for Micro-Swimming: Benchmarks and Applications

Luca Berti¹, Vincent Chabannes¹, Laetitia Giraldi² and Christophe Prud'homme¹

¹ Université de Strasbourg, CNRS, IRMA UMR 7501, Cemosis, F-67000 Strasbourg, France,

contact:{luca.berti,vincent.chabannes,christophe.prudhomme}@cemosis.fr,
<https://www.cemosis.fr>

² Inria-Sophia Antipolis-Méditerranée, 2004, route des Lucioles, Sophia Antipolis (FR),

Keywords: *Fluid dynamics, Low Reynolds, Moving Deformable Bodies, Swimming, Feel++, Finite element method.*

Multi-physics toolboxes stemmed from the Finite element embedded library (Feel++[1]), solving electro-mechanics, aero-thermal, fluid-structure interaction problems and a few others. A recent extension of the fluid mechanics toolbox allows the simulation of rigid and deformable bodies moving in a fluid [2], using an approach described in [3].

This new “swimmer” toolbox interacts with the fluid mechanics solver via a general interface used to prescribe the velocity and displacement at the interface between the two continua. In the swimmer toolbox, the swimmer’s gait can be prescribed using different formulations (imposed position, imposed displacement, imposed velocity), and based on these the remaining quantities are automatically computed.

In this talk, we present the mathematical and computational micro-swimmer framework as well as benchmarking results: moving rigid bodies, and different swimmers that the swimmer toolbox can simulate. Finally, we present an application of reinforcement learning using our framework and selected results.

REFERENCES

- [1] Feel++: <https://docs.feelpp.org/>
- [2] Berti, L., Chabannes, V., Giraldi, L. and Prud'homme, C. Modelling and finite element simulation of multi-sphere swimmers. *Comptes Rendus. Mathématique* 359, 1119-1127 (2021).
- [3] Maury, B. Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains. *Journal of Computational Physics* 156, 325-351 (1999).