

Towards understanding of boiling conjugate heat transfer using physics informed neural network

Robin Kamenicky¹, Konstantinos Ritos^{2,3}, Victorita Dolean¹, Jennifer Pestana¹, Katherine Tant¹, Salaheddin Rahimi⁴

¹ Mathematics and Statistics, University of Strathclyde, Glasgow, G11XH, UK,
robin.kamenicky@strath.ac.uk, victorita.dolean@strath.ac.uk

² Department of Mechanical Engineering, University of Thessaly, Volos 38334, Greece,
konritos@uth.gr

³ Department of Mechanical & Aerospace Engineering, University of Strathclyde,
Glasgow, G1 1XJ, UK, konstantinos.ritos@strath.ac.uk

⁴ Advanced Forming Research Centre, University of Strathclyde, Inchinnan, PA4 9LJ,
UK, salah.rahimi@strath.ac.uk

Keywords: *Physics Informed Neural Network, Conjugate Heat Transfer, Boiling, Immersion Quenching, Two-phase flow*

Conjugate heat transfer associated with boiling occurs in multiple industries such as metallurgical processing, power generation, refrigeration, electronics cooling and cryogenics[1]. This work focuses on immersion water quenching, yet the findings may often be extended to any of the above applications. Metallurgical quenching aims to alter microstructural characteristics of metallic materials to tailor their mechanical properties via heat treatment at elevated temperature followed by rapid cooling. The temperature can reach up to thousand of degrees Celsius leading to the appearance of numerous heat transfer regimes. Current simulation techniques rely heavily on empirical and semi-empirical models due to the limited understanding of the underlying boiling physics, while the equations governing the fluid flow are much better understood. In addition, high fidelity experimental data are quite limited, owing to the cost, complexity, accuracy of measurement techniques and data sensitivity. These circumstances make the problem inappropriate for general machine learning algorithms but also challenging for traditional numerical procedures such as the finite volume method. With this in mind, the authors aim to exploit physics informed neural network techniques for this problem. Utilisation of conservation laws and other well-posed mathematical models in machine learning can help circumvent the data shortage, improve generalisation performance, reduce dimensionality and help comprehend unresolved physical phenomena[2]. This work gives guidance on approaching such problems, discusses their feasibility and concludes with benefits and likely limitations.

REFERENCES

- [1] F. A. Kulacki et al., *Handbook of Thermal Science and Engineering*. Springer, 2018.
- [2] G. Karniadakis, et al., *Physics-informed machine learning*, Nature Reviews Physics, 3, pp 422–440, 2021.