

MULTIGRID REDUCTION IN TIME FOR HIGH-ORDER ADVECTION VIA DISSIPATIVELY CORRECTED COARSE-GRID OPERATORS

Hans De Sterck¹, Robert D. Falgout^{2*} and Oliver A. Krzysik³

¹ Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
hans.desterck@uwaterloo.ca, <https://uwaterloo.ca/applied-mathematics/>

² Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA, rfgout@llnl.gov, <https://computing.llnl.gov/casc/>
Prepared by LLNL under Contract DE-AC52-07NA27344

³ Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
okrzysik@uwaterloo.ca, <https://uwaterloo.ca/applied-mathematics/>

Key Words: *Parallel-in-time, multigrid, hyperbolic, HPC*

Because computer clock speeds are no longer increasing, the sequential time marching approach used in science simulation codes is becoming a bottleneck. Parallel time integration is a way of creating concurrency in a simulation that can be exploited to remove this bottleneck and provide speed ups, sometimes dramatic. The multigrid reduction in time (MGRIT) [1] approach applies existing knowledge and expertise in parallel spatial multigrid methods to the time dimension. The MGRIT method is designed to be as non-intrusive as possible and to take advantage of existing simulation codes and techniques as much as possible. This has worked well for parabolic equations, but parallel-in-time methods for advection-dominated or purely hyperbolic problems have proven to be difficult to develop [2].

In this work, we consider the application of MGRIT to linear advection PDEs. The key to efficient time integration with these methods is using a coarse-grid operator that provides a sufficiently accurate approximation to the so-called ideal coarse-grid operator. For certain classes of semi-Lagrangian discretization, we introduce a novel semi-Lagrangian-like coarse-grid operator that leads to fast multilevel time integration of variable-wave-speed linear advection. The operator is composed of a semi-Lagrangian discretization followed by a correction term that is designed such that the leading-order truncation error of the composite operator is approximately equal to that of the ideal coarse-grid operator. Parallel results show speed-ups over sequential time integration for variable-wave-speed advection problems using high-order discretizations up to order 5.

REFERENCES

- [1] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder. Parallel time integration with multigrid. *SIAM J. Sci. Comput.*, **36** (2014), pp. C635–C661.
- [2] H. De Sterck, R. D. Falgout, S. Friedhoff, O. A. Krzysik, and S P. MacLachlan. Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection. *Numer. Linear Algebra Appl.*, **28** (2021), doi: 10.1002/nla.2367.