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Reduced-order modelling aims to approximate a high-dimensional system by a low-dimen-
sional system that should be faster to solve and accurate enough for the desired purpose.
Non-intrusive or data-driven reduced-order models (ROMs) most commonly learn the
evolution of the system by exploiting machine learning [Il 2]. We present an approach
for data-driven reduced-order modelling based on a sub-sampling technique and domain
decomposition, the combination of which enables predictions to be made for unseen sce-
narios with larger-sized domains than were used in training. To find the low-dimensional
space, a convolutional autoencoder is used, as this type of network can compress infor-
mation more efficiently than traditional approaches [3]. For the prediction, an adversarial
network is used, which attempts to keep the predictions realistic [4].

The method is applied to chaotic time-dependent air flow past buildings at a moderate
Reynolds number in 2D. After training, we apply the data-driven ROM to a domain that
has twice the area of the domain used for training and with a different arrangement of
buildings. Statistical properties of the flows from the data-driven ROM are compared
with those from the CFD model in order to establish the success of the method.

The method presented here shows great potential for increasing the generalisation of
data-driven reduced-order models. We believe that this approach is generic and could be
applied to other problems, for example, other turbulent flows or porous media flows.
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