

Using Spectral Submanifolds for Nonlinear Control

Florian Mahlknecht¹, John Irvin Alora¹, Shobhit Jain², Edward Schmerling¹,
Riccardo Bonalli³, George Haller², Marco Pavone¹

¹ Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305, USA {florianm, jjalora, schmrlng, pavone}@stanford.edu

² Institute of Mechanical Systems, ETH Zürich, 8092 Zürich, Switzerland {shjain, georgehaller}@ethz.ch

³Laboratory of Signals and Systems, University of Paris-Saclay, CNRS, CentraleSupélec, riccardo.bonalli@l2s.centralesupelec.fr

Keywords: *Model Order Reduction, Spectral Submanifolds, Nonlinear Control*

Very high dimensional nonlinear systems arise in many engineering problems from discretization of the governing partial differential equations, e.g., through finite element methods. Despite their very successful application in, e.g., structural engineering, they have limited applicability for automatic control due to their intractable state-space size.

Previously, projection-based model order reduction techniques have been applied to obtain computationally feasible models to control such systems [2]. They build on the underlying assumption that dominant behaviors of the system dynamics are captured in the chosen linear subspace. This approach has been successfully applied in high-dimensional systems that are controlled about an equilibrium point. However, in the general nonlinear case, the projected dynamics might not preserve the full-order behavior and the subspace choice needs to be tuned in a case-by-case fashion.

Recent advances in spectral submanifold theory [1] justify model reduction under well-defined assumptions. So far, the theory allows quasi-periodic forcing with small amplitudes. In this work, we extend the setting to the presence of a control signal, actively driving the system to a desired state. We derive a computationally efficient control law that is able to close the feedback loop in real-time within an observable state-space dimension. Control performance is shown to be superior on a soft robot, where previous piecewise-affine, linearization techniques resulted in non-smooth trajectories.

This contribution paves the way for more rigorous applications of FEM models in control system design.

References

- [1] George Haller and Sten Ponsioen. “Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction”. In: *Nonlinear Dynamics* 86.3 (Nov. 2016), pp. 1493–1534. ISSN: 1573-269X. DOI: 10.1007/s11071-016-2974-z. URL: <https://doi.org/10.1007/s11071-016-2974-z>.
- [2] Sander Tonkens, Joseph Lorenzetti, and Marco Pavone. *Soft Robot Optimal Control Via Reduced Order Finite Element Models*. 2021. arXiv: 2011.02092 [cs.RO].