

MICROSTRUCTURE-INFORMED MODELING OF OPEN-POROUS CELLULAR MATERIALS

Shivangi Aney*, Barbara Milow and Ameya Rege

Institute of Materials Research, German Aerospace Center, Cologne, Germany

Key Words: *Porous cellular materials, Pore-size distributions, Pore-wall thickness, Relative Density, Macroscopic material properties, Computational Reconstruction.*

There have been several computational studies investigating the influence of the relative density on the macroscopic mechanical properties of open-porous cellular materials [1, 2]. However, the influence of the pore-sizes on the bulk properties of the material is still unclear for materials that exhibit a wide range of pore sizes over the length scale. The relevance of the pore structure on the properties of such materials was investigated by proposing a constitutive model and was recently reported [3]. In this work, we investigate computationally the influence of three morphological parameters *viz.*, the relative density, the pore-size distribution, and the pore-wall thickness on the mechanical properties of such open-porous materials. The results obtained emphasize that the effects of the pore-sizes, distributions and pore-wall thickness are not negligible although the relative density plays a significant role in dictating their mechanical properties. This is particularly true for materials showing a poly-disperse porous structure. As an example, the computational reconstruction of the three-dimensional (3-d) porous network of cellulose aerogels is described and the macroscopic material properties are validated against the experimental data.

REFERENCES

- [1] Gibson, L. J., Ashby, M. F., Schajer, G. S., & Robertson, C. I. (1982). The mechanics of two-dimensional cellular materials. *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 382, 25-42.
- [2] Gibson, I. J., & Ashby, M. F. (1982). The mechanics of three-dimensional cellular materials. *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 382, 43-59.
- [3] Rege, A., Aney, S., & Milow, B. (2021). Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. *Physical Review E* 103, 043001.