

Conjugate Heat Transfer Between a Solid and Rarefied Gas

Daan A.M. van der Woude^{*1}, Jochem M.W. van Heumen¹, Michael. R.A. Abdelmalik¹, Benjamin Uekermann² and E. Harald van Brummelen¹

¹Eindhoven University of Technology, Groene Loper 5, 5123AE Eindhoven, Netherlands,
d.a.m.v.d.woude@tue.nl, <https://research.tue.nl/nl/persons/daan-van-der-woude>

² University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany,
benjamin.uekermann@ipvs.uni-stuttgart.de,
<https://www.simtech.uni-stuttgart.de/exc/people/Uekermann/>

Keywords: *Conjugate Heat Transfer, Boltzmann Equation, PreCICE, Rarefied Gas Dynamics*

Modern technological developments in the areas of photolithography and MEMS increasingly hinge on resolving microscopic phenomena such as the interaction between rarefied gases and solids. Therefore, the development of computational methods that are capable of resolving such phenomena is necessary for the technological development of photolithography machines and MEMS.

On the macroscopic level the thermal interaction between solids and fluids is studied extensively and well understood. However, rarefied dynamics are not accurately resolved by continuum models, such as the Navier-Stokes-Fourier equations, making traditional conjugate heat transfer inapplicable to small-scale applications. Such lack of resolution precludes accurate predictions of conjugate heat transfer in next generation photolithography machines and MEMS which exhibit significant rarefied phenomena.

Typically, fluids on these length scales are described by the Boltzmann equation. Numerical approximations of the Boltzmann equation have been well studied since the latter half of the 20th century, with e.g. direct simulation Monte Carlo [1] or the method of moments [2]. However, there is a gap in our knowledge to couple these methods to a solid model.

In this work we present conjugate heat transfer between a rarefied gas and solid by coupling the Boltzmann equation to the heat equation. The Boltzmann equation is discretized using the Discontinuous Galerkin Finite Element Moment method [3] and the heat equation with the finite element method. The coupling between the two solvers is done using coupling library preCICE [4].

REFERENCES

- [1] G. A. Bird, *Direct simulation and the Boltzmann equation*. Phys. Fluids 13(10):2676-2681 1970.
- [2] H. Grad, *On the kinetic theory of rarefied gases*. commun. pur. appl. math., Vol. **2**, pp. 331–407, 1949.

- [3] M.R.A. Abdelmalik and E.H. van Brummelen, *An Entropy Stable Discontinuous Galerkin Finite-Element Moment Method for the Boltzmann Equation*. Comput. math. appl., 2016.
- [4] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev and B. Uekermann, *PreCICE A fully parallel library for multi-physics surface coupling*. Comput. & Fluids, Vol. **141**, pp., 250258, 2016.