

Application of a modified multigrid waveform relaxation method as a time-simultaneous approach to convection-diffusion equations

Jonas Dünnebacke^{1*} and Stefan Turek¹

¹ Department of Mathematics, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany, jonas.duennebacke@math.tu-dortmund.de, stefan.turek@math.tu-dortmund.de and www.mathematik.tu-dortmund.de/lsiii

Keywords: *parallel-in-time, space-time multigrid, multigrid waveform relaxation*

We present a time simultaneous multigrid method [1] that is closely related to multigrid waveform relaxation (cf. [2, 3]). The presented scheme is motivated by reordering an all-at-once system consisting of multiple time steps to a time-major ordering. If we interpret the values of one spatial degree of freedom at all discrete time steps as a single vector-valued unknown, this results in a system that formally has the same structure as the system in the stationary case. Then, a standard geometric multigrid method is applied to this system in a block-wise fashion. Using this approach it is reasonable to apply strong smoothers like a GMRES or a BiCGSTAB method with a block-Jacobi preconditioner which has several advantages in practical applications.

While this method is not inherently parallel in time, significant speedup compared to a sequential time stepping approach can be observed due to an increased parallelization potential in space. The potential of the proposed solution technique is illustrated in numerical studies for the convection-diffusion equation, particularly arising as subproblems in the nonstationary incompressible Navier-Stokes equations. Furthermore, problems in configurations with small diffusion coefficients and possible mitigations will be discussed.

REFERENCES

- [1] J. Dünnebacke, S. Turek, C. Lohmann, A. Sokolov and P. Zajac, Increased space-parallelism via time-simultaneous newton-multigrid methods for nonstationary nonlinear pde problems. *Int. J. High Perform. Comput. Appl.*, Vol. **35**(3), pp. 211–225, 2021.
- [2] J. Janssen and S. Vandewalle, Multigrid waveform relaxation on spatial finite element meshes: The discrete-time case. *SIAM J. Sci. Comput.*, Vol. **17**(1), pp. 133–155, 1996.
- [3] C. Lubich and A. Ostermann, Multi-grid dynamic iteration for parabolic equations. *BIT*, Vol. **27**(2), pp. 216–234, 1987.