

Block-preconditioning of variable-viscosity flows in ice-sheet modeling

Christian Helanow^{1,*} and Josefin Ahlkrona²

¹ Stockholm University, Matematiska institutionen, 106 91 Stockholm,
christian.helanow@math.su.se, <https://www.su.se/profiles/chhe4227-1.187739>

² Stockholm University, Matematiska institutionen, 106 91 Stockholm,
ahlkrona@math.su.se, <https://www.su.se/english/profiles/joah8451-1.417812>

Keywords: *Non-Newtonian Flow, Block Preconditioning, p-Stokes Equations*

The linear system arising in ice-sheet modelling is poorly conditioned. Ice is modeled as a non-Newtonian singular power-law fluid and the discrete system results from linearizing the non-linear p-Stokes equations. Factors impacting the system are the regularization of the shear-thinning rheology and the in ice-sheet modelling often used anisotropic elements and complex boundary conditions. Block preconditioners have been explored numerically for ice-sheet simulations in [2, 3] and studied in a more general non-Newtonian setting, in particular for Bingham fluids, in [1]. In the current study, we explore in detail how the type of block preconditioner used in [1] performs for ice-sheet problems and how this is related to material parameters, shape of the computational domain and boundary conditions. We also explore methods to speed up the assembly of block preconditioners.

REFERENCES

- [1] H. Xin, M. Neytcheva and C. Vuik, On Preconditioning of Incompressible Non-Newtonian Flow Problems. *J. Comp. Math.*, pp. 33–58, 2015.
- [2] C. Schannwell, R. Drews, T.A. Ehlers, O. Eisen, C. Mayer, M. Malinen, E.C. Smith and H. Eisermann, Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model. *The Cryosphere*, pp. 3917–3934, 2020.
- [3] M. Malinen, J. Ruokolainen, Juha, P. Råback, Peter, J. Thies, Jonas and T. Zwinger, Parallel Block Preconditioning by Using the Solver of Elmer. In *Applied Parallel and Scientific Computing*, ed. P. Manninen and P. Öster, Springer Berlin Heidelberg, pp. 545–547, 2013.