

Wave redirection and confinement via elastic meta-lattices

J. M. De Ponti*, L. Iorio, R. Ardito and A. Corigliano,

Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy,
jacopomaria.deponi@polimi.it, luca.iorio@polimi.it, raffaele.ardito@polimi.it,
alberto.corigliano@polimi.it

Key Words: *wave confinement, meta-lattices, resonators*

Recent progress in Additive Manufacturing (AM) enables the creation of cellular architectures with unique mechanical performances [1] which can be used as effective wave diffractors, lenses, filters, or localizers [2, 3]. Inspired by the advanced wave manipulation performances of elastic substrates with resonators [4], we design elastic meta-lattices capable of generating non-reciprocal wave propagation. The proposed meta-lattice (Fig. 1) combines chiral structures together with local resonance, to induce circular wavefield for wave confinement.

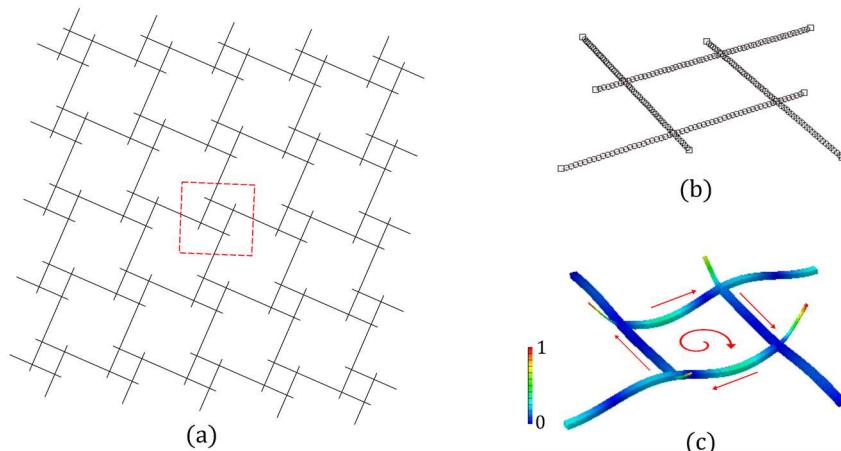


Fig. 1. (a) Meta-lattice structure for wave confinement. The structure is obtained through a periodic repetition of the unit cell (b) modelled using Timoshenko beam finite elements. The introduction of local resonators inside the structure allows to induce a circular wavefield.

The lattice is modelled using Timoshenko (shear flexible) beams in space with 6 degrees of freedom in each node. This allows to reduce the high computational cost of the simulations that would arise when using full 3D solid elements.

REFERENCES

- [1] T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, and M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, *Mater. Des.*, Vol. **183**, pp. 1-18, 108137 (2019).
- [2] A. S. Phani, J. Woodhouse, and N. A. Fleck, Wave propagation in two-dimensional periodic lattices, *J. Acoust. Soc. Am.*, Vol. **119**, 1995 (2006).
- [3] S. Gonella, A. C. To, and W. K. Liu, Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting, *J. Mech. Phys. Solids*, Vol. **57**, pp. 621-633 (2009).
- [4] J. M. De Ponti, A. Colombi, E. Riva, R. Ardito, F. Braghin, A. Corigliano, and R. V. Craster, Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting, *Appl. Phys. Lett.*, Vol. **117**, 143902 (2020).