

Multiscale modeling of heterogeneous structures based on a localized model order reduction approach

Philipp Diercks^{1*}, Karen Veroy², Annika Robens-Radermacher¹ and Jörg F. Unger¹

¹ The german federal institute for materials research and testing, Unter den Eichen 87, 12205 Berlin, {philipp.diercks, annika.robens-radermacher, joerg.unger}@bam.de, www.bam.de

² Centre for Analysis, Scientific Computing and Applications (CASA), Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, k.p.veroy@tue.nl

Keywords: *Multiscale method, Variational multiscale method, Domain decomposition, Model order reduction*

Many of today's problems in engineering demand reliable and accurate prediction of failure mechanisms of mechanical structures. Herein, it is necessary to take into account the heterogeneous structure on the lower scale, to capture the underlying physical phenomena. However, this poses a great challenge to the numerical solution as the computational cost is significantly increased by resolving the lower scale in the model. Moreover, in applications where scale separation as the basis of classical homogenization schemes does not hold, the influence of the lower scale on the upper scale has to be modelled directly.

This work aims to develop an efficient concurrent methodology to model heterogeneous structures combining the variational multiscale method (VMM) [1] and model order reduction techniques (e.g. [2]). First, the influence of the lower scale on the upper scale can be taken into account following the additive split of the displacement field as in the VMM. Here, also a decomposition of the global domain into subdomains, each containing a fine grid discretization of the lower scale, is introduced. Second, reduced approximation spaces for the upper and lower scale solution are constructed by exploring possible solutions for each subdomain based on a representative unit cell. The local reduced spaces are designed such that local contributions of each subdomain can be coupled in a conforming way. Thus, the resulting global system is sparse and reduced in size compared to the direct numerical simulation, leading to a faster solution of the problem.

The authors gratefully acknowledge financial support by the German Research Foundation (DFG), project number 394350870, and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC Grant agreement No. 818473).

REFERENCES

[1] Hughes, T.J.R. and Feijoo, G.R. and Mazzei, L. and Quincy, J.-B. The variational multiscale method - a paradigm for computational mechanics. *Comput. Methods*

Appl. Mech. Engrg. (1998) **166**:3–24.

[2] J.S. Hesthaven, G. Rozza, and B. Stamm, *Certified Reduced Basis Methods for Parametrized Partial Differential Equations*, Springer, 2016.