

Detection of Voids and Cracks with Mono- and Multi-Parameter Full Waveform Inversion

Tim Bürchner^{1,*}, Philipp Kopp¹, Stefan Kollmannsberger¹ and Ernst Rank^{1,2}

¹ Chair of Computational Modeling and Simulation, Technical University of Munich, D-80333 Munich, Germany

² Institute for Advanced Study, Technical University Munich, D-80333 Munich, Germany
tim.buerchner@tum.de, <https://www.cms.bgu.tum.de>

Key Words: *Full Waveform Inversion, Non-destructive Testing, Adjoint Method, Wave Equation, Indicator Function*

Full Waveform Inversion (FWI) is a tomography technique with its origin in seismic exploration [1]. Recorded wavefields reveal information about the interior material of a structure. The fitting of simulative to experimental data leads to a high-dimensional, non-linear optimization problem with a computationally expensive forward problem. This usually requires using a gradient-based optimization algorithm in combination with an adjoint method.

In the recent years, mono- and multi-parameter FWI have been applied successfully to detect material perturbations in wave speed and density in non-destructive testing [2,3]. However, detecting voids, such as pores or air-filled cracks remains a challenge. In our work, we propose to use an indicator function as inversion parameter that is zero in the void and one inside the intact domain. Compared to other mono- and multi-parameter FWI approaches our formulation performs significantly better in detecting voids.

First, we consider a one-dimensional example and investigate different ways of modeling the air-filled domain. Then, we show how these effects influence the quality of mono- and multi-parameter full waveform inversion on a two-dimensional scalar wave equation. We discretize the forward problem with linear quadrilateral elements in space and central differences in time. The results show that using an indicator function α leads to the best reconstruction of voids and cracks. Finally, we extend our mono-parameter FWI approach to the three-dimensional elastic wave equation.

REFERENCES

- [1] A. Fichtner, “Full Seismic Waveform Modelling and Inversion”, *Advances in Geophysical and Environmental Mechanics and Mathematics*, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
- [2] R. Seidl and E. Rank, “Iterative time reversal based flaw identification”, *Computers & Mathematics with Applications*, vol. 72, pp. 879–892, Aug. 2016.
- [3] J. Rao, J. Yang, M. Ratashepp, and Z. Fan, “Multi-parameter reconstruction of velocity and density using ultrasonic tomography based on full waveform inversion”, *Ultrasonics*, vol. 101, p. 106004, Feb. 2020.