

Bound-preserving and entropy-stable algebraic flux correction schemes for the shallow water equations with topography

Hennes Hajduk¹, Dmitri Kuzmin²

¹ TU Dortmund University, Institute of Applied Mathematics (LS III) Vogelpothsweg 87, D-44227 Dortmund, Germany, hennes.hajduk@math.tu-dortmund.de, <http://www.mathematik.tu-dortmund.de/lsiii/cms/de/mitarbeiter/member/id=Hennes+Hajduk.html>

²TU Dortmund University, Institute of Applied Mathematics (LS III) Vogelpothsweg 87, D-44227 Dortmund, Germany, kuzmin@math.uni-dortmund.de, <http://www.mathematik.tu-dortmund.de/lsiii/cms/en/mitarbeiter/member/id=Dmitri+Kuzmin.html>

Keywords: *shallow water equations, property-preserving discretizations, algebraic flux correction, lake at rest, continuous finite elements*

Numerical methods for solving hyperbolic problems need to be carefully designed to obtain physically correct approximations. Examples of such considerations for the shallow water equations, are well-balancedness, nonnegativity of water heights, and, entropy stability. Recent years saw an increased interest in algebraic flux corrections schemes based on (dis-)continuous finite element methods. Such bound-preserving [1] and entropy-stable [3] approaches for continuous finite elements have been successfully applied to the shallow water equations with flat bottom topography [2].

In this work, we extend the above techniques to the shallow water system with topography source term. Our method preserves the lake at rest up to machine precision. Nonnegativity of water heights can be proven under a standard CFL condition, and a semi-discrete entropy inequality is shown. Our scheme can be interpreted as a generalization of certain finite volume schemes to the finite element setting. Numerical examples for well-known benchmarks are presented to evaluate the performance of the scheme. In particular, I will discuss some examples where wetting-and-drying algorithms need to be employed.

REFERENCES

- [1] D. KUZMIN (2020) *Monolithic convex limiting for continuous finite element discretizations of hyperbolic conservation laws* Comput. Method. Appl. M. **361**: 112804 doi: 10.1016/j.cma.2019.112804
- [2] D. KUZMIN, H. HAJDUK, A. RUPP (2022) *Limiter-based entropy stabilization of semi-discrete and fully discrete schemes for nonlinear hyperbolic problems* Comput. Method. Appl. M. **389**: 114428 doi:10.1016/j.cma.2021.114428
- [3] D. KUZMIN, M. QUEZADA DE LUNA (2020) *Algebraic entropy fixes and convex limiting for continuous finite element discretizations of scalar hyperbolic conservation laws* Comput. Method. Appl. M. **372**: 113370 doi:10.1016/j.cma.2020.113370