

ARE THE TERMS *STIFFENING/SOFTENING STRUCTURES* MECHANICALLY UNAMBIGUOUS?

JOHANNES KALLIAUER ^{*}, HERBERT A. MANG ^{*}

^{*} Institut for Mechanics of Materials and Structures,
TU Wien (Technische Universität Wien)
Karlsplatz 13, 1040 Vienna, Austria
herbert.mang@tuwien.ac.at, <https://www.imws.tuwien.ac.at>

Key words: elastic buckling, static buckling, postbuckling behavior, loss of stability of beams plates and shells, numerical methods, finite element methods, numerical methods

ABSTRACT

The purpose of this paper is to give a conditionally affirmative answer to the question posed in its title. The tool that enables such an answer is a mechanically objective arc-length, ξ . In this context, mechanical objectivity is defined as the independence of $\xi(\lambda)$, where λ denotes a dimensionless proportionality factor, of the chosen finite element and the discretization of the investigated structure in the framework of a consistent mesh refinement. It guarantees, e.g., the mechanical objectivity of the value of λ , for which $d^2\lambda/d\xi^2=0$, signaling the transition from a stiffening to a softening structure and vice versa. It is shown numerically that for this value of λ , $d^2\lambda/dq_i^2>0$ while $d^2\lambda/dq_j^2<0$, where q_i and q_j denote two characteristic degrees of freedom (d.o.f.) of the investigated structure. Hence, individual d.o.f. are, in general, unsuitable for marking extreme values of the stiffness of structures. A global quantity, alternative to the normalized stiffness $d\lambda/d\xi$, is $\det\mathbf{K}_T/\det(\mathbf{K}_T)_0$, where \mathbf{K}_T and $(\mathbf{K}_T)_0$ denote the tangent stiffness matrix at an arbitrary load level and at the onset of loading, respectively. It is shown numerically that, in general, the values of λ for which $d(\det\mathbf{K}_T)/d\lambda=0$ do not correlate with the ones of extreme values of the stiffness of structures. In fact, extreme values of $\det\mathbf{K}_T$ usually have no physical meaning. Consequently, the decrease of $\det\mathbf{K}_T$, preceding the onset of buckling, need not signal a softening structure. An oblate rotational ellipsoidal shell, subjected to internal pressure, serves as an example for buckling of a stiffening shell.