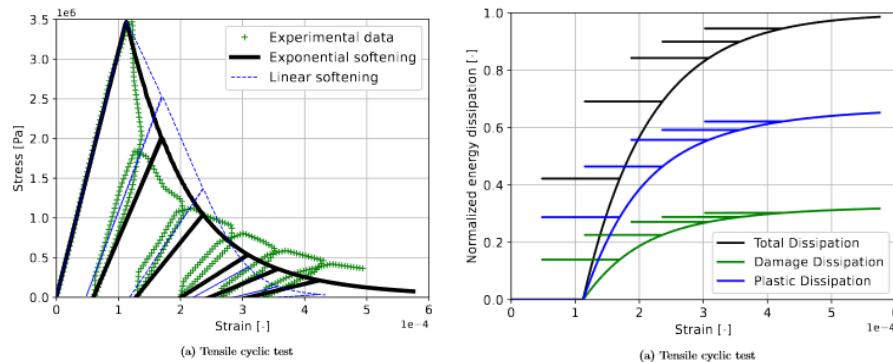


A UNIFIED NON-LINEAR ENERGY DISSIPATION-BASED PLASTIC-DAMAGE MODEL FOR CYCLIC LOADING

A. Cornejo^{1,2}, S. Jiménez^{1,2}, L.G. Barbu^{1,2}, S. Oller^{1,3}, E. Oñate^{1,2}

¹ Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Campus Norte UPC, 08034
 Barcelona, Spain

² Universitat Politècnica de Catalunya (UPC), Campus Norte UPC, 08034 Barcelona, Spain


³ Consejo Nacional y de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ingeniería,
 Universidad Nacional de Salta, Av. Bolivia 5150, 4400, Salta, Argentina

Key Words: *Constitutive Modelling, Fracture Mechanics, Finite Element Method, Plasticity, Damage.*

A new energy-dissipation-based rate-independent constitutive law within the framework of elasto-plasticity coupled with damage^{1,2,3} is proposed. With this methodology, the inelastic strains and the stiffness degradation exhibited by quasi-brittle materials under monotonic or cyclic loading conditions are taken into account. A wide variety of hardening/softening laws on the stress-strain relationship are described and considered for the novel normalized plastic-damage energy dissipation internal variable.

This normalized internal variable allows the model to be independent on the sign of the load and dissipate different fracture energies (tensile, compressive and potentially shear) in a natural way. Several numerical examples are presented in order to ensure the efficiency and validity of the proposed model for simulating the non-linear behaviour of quasi-brittle materials under monotonic and cyclic loading.

Some numerical aspects of the implemented algorithm and the return mapping procedure are also described in detail and discussed.

Acknowledgements: “Fatigue4Light: Fatigue modelling and fast testing methodologies to optimize part design and to boost lightweight materials deployment in chassis parts.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101006844”.

REFERENCES

- [1] J. Lee and G.L. Fenves, Plastic-Damage model for cyclic loading of concrete structures, *Journal of Engineering Structures*, ASCE, 1998.
- [2] J. Lubliner, J. Oliver, S. Oller and E. Oñate, A plastic-damage model for concrete, *Int. J. Solids and Structures*, Vol 25 pp 299-326, 1989.
- [3] J. Y. Wu and M. Cervera. A thermodynamically consistent plastic-damage framework for localized failure in quasi-brittle solids: Material model and strain localization analysis, *International Journal of Solids and Structures*. Vol (88-89) pp 227-247, 2016.