

WANG TILES FOR EXPLORING AND MANUFACTURING MODULAR METAMATERIALS

Jan Zeman

Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29
Prague 6, Czech Republic, jan.zeman@cvut.cz,
<https://openmechanics.fsv.cvut.cz/people/jan-zeman>

Keywords: *Non-periodic mechanical metamaterials, combinatorial design, robot-assisted manufacturing, centimeter-scale self-assembly*

Proposed originally as a visual aid for proving theorems in mathematical logic [1], Wang tilings have found subsequent applications in computer graphics, statistical physics, or biological computing. In this contribution, we discuss the use of Wang tilings in the design, manufacturing, and self-assembly of architected (meta)materials.

The talk splits into three parts. The first part addresses the tiling concept in its most straightforward installment [2], which employs a single parent tile, possibly rotated by 90 degrees, that allows assembling structures with a locally-controlled Poisson ratio.

In the second part, we show that the elementary scenario naturally extends to the framework of vertex-based Wang tilings and demonstrate its use in the design of a soft porous metamaterial with a non-periodic structure. Here, the emphasis is put on the inherent modularity of this concept and its potential for scalable robot-assisted manufacturing.

The third part of the talk is devoted to exploring the potential of Wang tiling formalism in centimeter-scale passive self-assembly of target patterns. To this purpose, we present a design principle for magneto-mechanical tiles [3] that self-assemble in a checkerboard pattern under external mechanical excitation while exhibiting robust error-correcting features during the self-assembly process. Finally, intrinsic limitations of this approach are discussed, along with a simulation-supported strategy for increasing the size of self-assembled patterns.

This work was supported by the Czech Science Foundation project No. 19-26143X.

REFERENCES

- [1] H. Wang, Proving theorems by pattern recognition—II. *Bell Syst. Tech. J.*, Vol. **40**, pp. 1–41, 1961.
- [2] V. Nežerka, M. Somr, T. Janda, J. Vorel, M. Doškář, J. Antoš, J. Zeman, and J. Novák, A jigsaw puzzle metamaterial concept, *Compos. Struct.*, Vol. **202**, pp. 1275–1279, 2018.
- [3] M. Jílek, M. Somr, M. Kulich, J. Zeman, and L. Přeučil. Towards a passive self-assembling macroscale multi-robot system, *IEEE Robot. Autom. Lett.*, Vol. **6**, pp. 7293–7300, 2021.