

FILTERING SPURIOUS HIGH-FREQUENCY MODES IN LANDSLIDE IMPACT ON AN OFFSHORE INFRASTRUCTURE

Avshalom Ganz^{1*}, Pavel A. Trapper² and Miriam R. Gindis³

¹ Ariel University, Ariel, Israel, E-mail: aganz@ariel.ac.il

² Ben-Gurion University of the Negev, Beer-Sheva, Israel, E-mail: trapper@bgu.ac.il

³ Ben-Gurion University of the Negev, Beer-Sheva, Israel, E-mail: gindis@post.bgu.ac.il

Key Words: *Submarine Landslides, Shear Bands, Impact Load, Eulerian Formulation, Signal Processing.*

While simulating the impact of submarine landslides on underwater structures, one must adequately model contact interactions. Contact problems often exhibit unreasonable superfluous high-frequency modes leading to strong unphysical oscillations, which may significantly degrade the quality of the results. In order to recover a clean solution to the problem, it is necessary to apply some numerical techniques to filter out those spurious high-frequency modes.

In this work, we examine some low-pass filtering approaches to clean the numerical solution of the impact problems by filtering those high-frequency modes. We introduce the different approaches, their tradeoffs, and we demonstrate the techniques on several landslide impact events.