

Compressible lattice Boltzmann method for rotating overset grids

Heesik YOO¹, Julien FAVIER² and Pierre SAGAUT³

¹ M2P2-CNRS, 13013 Marseille, heesik.yoo@univ-amu.fr

² M2P2-CNRS, 13013 Marseille, julien.favier@univ-amu.fr

³ M2P2-CNRS, 13013 Marseille, pierre.sagaut@univ-amu.fr

Keywords: *lattice Boltzmann method, overset grids, Chimera mesh, rotating geometries, compressible flows, turbulent flows*

Lattice Boltzmann method (LBM) is considered as a powerful approach for many industrial applications thanks to its low computational cost for high fidelity resolutions. Although the method suffers from instability issues in the compressible or high Reynolds number flows, they can be successfully overcome by using different collision operators, such as the recursive regularized collision model [1, 2, 3, 4].

An important issue is whether the compressible LBM model is still able to maintain its stability and accuracy in the context of complex numerical systems, using overset grids for instance (so called, Chimera mesh). The rotating overset grid is one of the classical methods to actualize the rotating geometries in computational fluid dynamics, and it has been analyzed in the LBM framework in the context of athermal (weakly compressible) flows [5, 7, 6, 8]. However, to the author's best knowledge, no LBM model has demonstrated so far its capability to simulate compressible flows over the overset grids.

In this work, we use the compressible recursive regularized collision model to stabilize the high-Mach flow conditions. Fictitious forces inside the rotating region are discretized using the Guo's forcing term. Quadratic interpolations are applied at the border of the rotating and fixed grids to perform the communications between both grids. Thermal properties are computed through the entropy equation which is solved based on high order MUSCL-Hancock scheme.

The results show that the proposed numerical LBM framework is able to capture the essential physics of high mach flows through rotating geometries, with the expected accuracy and relatively low computational cost.

REFERENCES

- [1] Feng, Y. and Boivin, P. and Jacob, J. and Sagaut, P., *Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows*, Journal of Computational Physics, 2019.

- [2] Farag, G. and Zhao, S. and Coratger, T. and Boivin, Pierre and Chiavassa, G. and Sagaut, Pierre, *A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows*, Physics of Fluids, 2020.
- [3] Guo, S. and Feng, Y. and Sagaut, P., *Improved standard thermal lattice Boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows*, Physics of Fluids, 2020.
- [4] Coratger, T. and Farag, G. and Zhao, S. and Boivin, P. and Sagaut, P., *Large-eddy Lattice-Boltzmann modelling of transonic flows*, Physics of Fluids, 2021.
- [5] Hang, R., Sun, C., Li, Y., Satti, R., Shock, R., Hoch, J., Chen, H. *Lattice Boltzmann Approach for Local Reference Frames*, Communications in Computational Physics, 9(5), 2011
- [6] Lallemand, P. and Luo, L. *Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows*, Journal of Computational Physics , 2020.
- [7] Kian Far, E., Geier, M. and Krafczyk, M. *Simulation of rotating objects in fluids with the cumulant lattice Boltzmann model on sliding meshes*, Computers Mathematics with Applications, 2018.
- [8] Yoo, H. and Bahlali, M. and Favier, J. and Sagaut, P., *A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating geometries*, Physics of fluids, 2021.