
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

Cleaning up distributed objects in managed languages and
applications in extremely large scale simulations

Jack Betteridge*1, Patrick Farrell2 and David Ham3

1 Imperial College London, Huxley Building, South Kensington Campus, London, SW7
2AZ j.betteridge@imperial.ac.uk, www.imperial.ac.uk/people/j.betteridge

2 University of Oxford, Andrew Wiles Building, Radcliffe, Observatory Quarter,
Woodstock Road, Oxford, OX2 6GG, patrick.farrell@maths.ox.ac.uk,

www.maths.ox.ac.uk/people/patrick.farrell
3 Imperial College London, Huxley Building, South Kensington Campus, London, SW7

2AZ, david.ham@imperial.ac.uk, www.imperial.ac.uk/people/david.ham

Keywords: Partial Differential Equations, Finite Element Method, Code Generation,
Exascale

Memory managed languages such as Python and Julia are being used increasingly often
on high performance computers (HPC) to drive extremely large, pre-exascale simulations.
Using Firedrake, a code generation framework for solving partial differential equations
(PDEs), we can demonstrate that generating simulation code from a high-level Python
interface provides an effective mechanism for creating high performance simulations from
very few lines of user code [1]. Advantages of working in a managed language include the
flexibility to change discretisations and solvers for better hardware utilisation, as well as
being more productive for scientists and engineers. However, one drawback is that the
memory management of such a language can create havoc when attempting to clean up
distributed objects.
When running Firedrake in parallel, it is possible for Python’s garbage collector to cause
a deadlock when attempting to clean up distributed PETSc data structures that require
collective destruction. Turning off Python’s garbage collection is a poor workaround at
best and a catastrophic memory leak at worst.
We outline an algorithm for the safe parallel destruction of distributed objects that can
be used in any managed language and assess its impact on performance using different
HPC facilities using a reference implementation in PETSc/petsc4py. Furthermore, we
demonstrate some of the new very large scale simulations written using Firedrake that
these improvements allow us to run.

REFERENCES

[1] J. D. Betteridge, P. E. Farrell and D. A. Ham, Code Generation for Produc-
tive, Portable, and Scalable Finite Element Simulation in Firedrake Comput-
ing in Science & Engineering, vol. 23, no. 4, pp. 8-17, 1 July-Aug. 2021, doi:
10.1109/MCSE.2021.3085102.


