

TWO-PHASE FLOW REDUCED-ORDER MODEL WITH POLYDISPERSE OSCILLATING DROPLETS

S. Kokh¹, A. Loison^{2,*}, M. Massot² and T. Pichard²

¹ CEA Saclay, Gif-sur-Yvette, France

² CMAP, École polytechnique, IPParis, Palaiseau, France,
arthur.loison@polytechnique.edu

Keywords: *Two-phase flows, Two-scale modeling, Polydisperse spray, Curvatures*

In the context of two-phase compressible flows involving both separated and dispersed phases i.e. spray of droplets, Direct Numerical Simulations (DNS) using an interface-tracking method are not tractable for industrial applications because of the multi-scale nature of the flow. Two-scale multi-fluid models with diffuse interface, amenable to realistic computational time, can be predictive for atomization, as long as they rely on the proper modeling of the small-scale interfacial dynamics below a given threshold.

From given large- and small-scale potential and kinetic energies, the Stationary Action Principle (SAP) and the second principle of thermodynamics [1, 2] provide a framework to derive well-posed models with coherent momentum and energy equations. Several works (see e.g. [3, 2]) also indicate that geometrical quantities such as interfacial area density or surface average of mean and Gauss curvatures are relevant to describe small-scale phenomena. Among them, the well-studied oscillation dynamics of droplets is strongly linked to these geometrical variables, and it is then a natural starting point for our model.

In this work we pursue the design of a small-scale flow model, extending [4, 2]. We first assess the relevance of a new set of geometrical variables through differential geometry and DNS with geometrical post-processing. Interpreting geometrical variables as moments of a statistical distribution of the droplets, we then propose monodisperse and polydisperse closures that provide small-scale energies. Finally, we derive a small-scale model with the SAP and second principle of thermodynamics.

REFERENCES

- [1] F. Drui et al., Small-scale kinematics of two-phase flows: identifying relaxation processes in separated- and disperse-phase flow models, *J. Fluid Mech.*, 2019.
- [2] P. Cordesse, Contribution to the study of combustion instabilities in cryotechnic rocket engines: coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations, PhD thesis, 2020.
- [3] D. A. Drew, Evolution of Geometric Statistics, *SIAM J. Appl. Math.*, 1990.
- [4] P. Cordesse et al., A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables, *ESAIM: ProcS*, 2020.