

## A framework approach integrating high-fidelity analysis methods for gradient-based design optimization of aircraft

**Th. Backhaus<sup>1</sup>, S. Gottfried<sup>1</sup>, J.T. Hwang<sup>2</sup>, A. Merle<sup>3</sup> and A. Stück<sup>4</sup>**

<sup>1</sup> Research Scientist, DLR Institute of Software Methods for Product Virtualization,  
Department Simulation Frameworks, Zwickauer Str. 46, D-01069 Dresden, Germany

<sup>2</sup> Assistant Professor, University of California San Diego,  
Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive, San Diego, CA, USA

<sup>3</sup> Research Scientist, DLR Institute of Aerodynamics and Flow Technology,  
Department C<sup>2</sup>A<sup>2</sup>S<sup>2</sup>E, Lilienthalplatz 7, D-38102 Braunschweig, Germany

<sup>4</sup> Head of Department, DLR Institute of Software Methods for Product Virtualization,  
Department Simulation Frameworks, Zwickauer Str. 46, D-01069 Dresden, Germany

**Key Words:** *multidisciplinary optimization (MDO), MDO framework, high-performance computing (HPC), gradient-based optimization, aircraft design, adjoint methods.*

A framework approach is presented for gradient-based multidisciplinary optimization (MDO) of aircraft by means of high-fidelity analyses. It takes advantage of both the HPC ecosystem *FlowSimulator* and the framework *OpenMDAO* [1]. The prior relies on the central *FlowSimulator Data Manager (FSDM)* and a number of simulation plug-ins well-established in aeronautics industry, such as the DLR CFD code *TAU* with its discrete-adjoint complement, an elasticity-based mesh deformation approach, finite-element structure-mechanics analyses and methods for the transfer of surface loads and deformations together with a CAD-based shape parametrization. The latter implements an automated computation of multidisciplinarily coupled gradients of cost and constraint functionals. Using the suggested framework approach, an existing procedure for the static aeroelastic design optimization of a generic transport aircraft in trimmed cruise conditions [2] is reorganized and restructured hierarchically. The modular framework integration of MDO components, which allows for an automated reverse-mode gradient accumulation, will be described and discussed in the presentation showing the practical value of the HPC framework approach for the static aeroelastic optimization case at hand. Special attention will be given to software architecture, consistency and performance issues, such as in-memory data handling in parallel MDO computations and scalability of the suggested MDO framework approach.

## REFERENCES

- [1] Th. Backhaus, S. Gottfried, A. Merle, J. T. Hwang and A. Stück, Modularization of High-Fidelity Static Aeroelastic MDO Enabling a Framework-based Optimization Approach for HPC. *AIAA 2021-1236*, 2021.
- [2] A. Merle, C. Ilic, M. Abu-Zurayk, J. Häßy, R. Becker, M. Schulze Th. Klimmek. A High-Fidelity Adjoint-based Aircraft Shape Optimization with Aeroelastic Trimming and Engine Coupling, *EUROGEN Conference*, Guimaraes, Portugal, 2019