

Robust and scalable Newton-type methods for visco-plastic sea-ice models

Yu-hsuan Shih¹, Carolin Mehlmann² and Georg Stadler¹

¹ Courant Institute of Mathematical Sciences, New York University,
shihyh@cims.nyu.edu, stadler@cims.nyu.edu

² Max-Planck Institute for Meteorology, Hamburg, carolin.mehlmann@mpimet.mpg.de

Keywords: *sea-ice, visco-plasticity, Newton methods, preconditioners*

We present a novel linearization for the Hibler rheology, a model commonly used to model sea-ice with a continuum model on large scales. The Hibler model involves a viscous-plastic constitutive relation to model the continuous deformation of sea-ice as well as the breakup of sea-ice resulting in so-called leaks. The nonlinearity in the rheology makes the robust numerical solution of these sea-ice models challenging. The proposed Newton-type method has a cost per iteration that is identical to the cost of a standard Newton method. However, it converges much faster and more robust, and allows high-resolution and fully resolved modeling of sea-ice.