

Energy-momentum Preserving Time Integration Schemes for Petrov-Galerkin EAS Mixed Finite Elements

Robin Pfefferkorn¹, Antonio J. Gil², Rogelio Ortigosa³ and Peter Betsch¹

¹ Karlsruhe Institute of Technology (KIT) - Institute of Mechanics, Otto-Amann-Platz 9, 76131 Karlsruhe, Germany, {robin.pfefferkorn@kit.edu, peter.betsch@kit.edu}

² Zienkiewicz Centre for Computational Engineering, College of Engineering Swansea University, Bay Campus, SA1 8EN, United Kingdom, a.j.gil@swansea.ac.uk

³ Technical University of Cartagena, C Dr. Fleming SN. 30202 Cartagena, r.ortigosa@upct.es

Keywords: *Petrov-Galerkin, Mixed Finite Elements, Energy-Momentum-Scheme*

In order to improve the performance of finite elements in distorted meshes, Rajendran and Liew [3] proposed a Petrov-Galerkin ansatz for higher order displacement based finite elements. Recently, this approach has been extended to mixed finite elements by Pfefferkorn and Betsch [2] which allows the construction of high performance low-order finite elements which are mesh-distortion insensitive, locking free and do not suffer from spurious hourgassing instabilities in large deformation problems.

So far, this class of Petrov-Galerkin elements has, to the best knowledge of the authors, only been used for static problems. However, their high performance in that case suggest improved performance also in dynamic simulations especially in combination with energy-momentum preserving time integration schemes (see [1, 4]). In the present contribution we investigate Petrov-Galerkin mixed finite elements in dynamic structure preserving simulations and present issues as well as corresponding solutions to problems which arise from the underlying Petrov-Galerkin framework.

REFERENCES

- [1] O. Gonzalez and J. C. Simo. On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. *Comput. Methods Appl. Mech. Engrg.*, 134(3):197–222, 1996.
- [2] R. Pfefferkorn and P. Betsch. Mesh distortion insensitive and locking-free Petrov–Galerkin low-order EAS elements for linear elasticity. *Int. J. Numer. Meth. Engng.*, 122(23):6924–6954, 2021.
- [3] S. Rajendran and K. M. Liew. A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. *Int. J. Numer. Meth. Engng.*, 58(11):1713–1748, 2003.
- [4] I. Romero. An analysis of the stress formula for energy-momentum methods in non-linear elastodynamics. *Comput. Mech.*, 50(5):603–610, 2012.