

Robust Coarse Spaces for Domain Decomposition Methods

Alexander Heinlein¹, Axel Klawonn^{2,3}, Martin Langer^{2,3}, Adam Wasiak², and
Janine Weber²

¹ Delft Institute of Applied Mathematics, TU Delft, Mekelweg 4, 2628 CD Delft,
The Netherlands. Email: a.heinlein@tudelft.de

² Department of Mathematics and Computer Science, University of Cologne,
Weyertal 86-90, 50931 Köln, Germany.
Email: {axel.klawonn,martin.langer,adam.wasiak.janine.weber}@uni-koeln.de.

URL: <https://www.numerik.uni-koeln.de>

³ Center for Data and Simulation Science, University of Cologne.
URL: <https://www.cds.uni-koeln.de>

Keywords: *Domain decomposition methods, FETI-DP, BDDC, adaptive coarse spaces*

The convergence rate of domain decomposition methods is generally determined by the eigenvalues of the preconditioned system. For second-order elliptic partial differential equations, coefficient discontinuities with a large contrast can lead to a deterioration of the convergence rate. Only by implementing an appropriate coarse space or second level, a robust domain decomposition method can be obtained. In this talk, frugal and adaptive coarse spaces for FETI-DP and BDDC methods are discussed and parallel results are presented. If time allows, nonlinear adaptive domain decomposition methods and virtual element discretizations are also discussed.