

Simulation and UQ of mineral reactions in the presence of fractures

Michele Botti¹, Alessio Fumagalli² and Anna Scotti³

¹ Politecnico di Milano, Piazza Leonardo da Vinci, 32. michele.botti@polimi.it

² Politecnico di Milano, Piazza Leonardo da Vinci, 32. alessio.fumagalli@polimi.it

³ Politecnico di Milano, Piazza Leonardo da Vinci, 32. anna.scotti@polimi.it

Keywords: *fractures, reactive flow.*

CO_2 sequestration is one of the promising technology to mitigate the climate change in the next decades. The presence of dissolved CO_2 in water alters the pH and favors some mineral reactions which may contribute to a safe storage of carbon thanks to two effects: i) the chemical bonding of carbon in the solid matrix, ii) and the variation of porosity [2].

We want to simulate this reactive transport phenomenon (under some simplifying assumptions) in the presence of fractures, to estimate the change in aperture and permeability due to mineral reactions. To this aim we employ a hybrid dimensional model for fractures, represented as lines or surfaces embedded in the domain, [1], and a suitable splitting of the coupled PDEs of the model, describing the evolution of pressure and flow, solute concentration, solid volume fraction and possibly temperature. Moreover, we perform a sensitivity analysis to some relevant uncertain parameters in the model to investigate their impact on the solution and gain insight into a complex coupled problem.

REFERENCES

- [1] A. Fumagalli and A. Scotti. *A mathematical model for thermal single-phase flow and reactive transport in fractured porous media*. In: Journal of Computational Physics (2021)
- [2] C. A. Peters F. T. Ling, D. A. Plattenberger and A. F. Clarens. *Sealing porous media through calcium silicate reactions with CO_2 to enhance the security of geologic carbon sequestration*. In: Environmental Engineering Science (2021).