

Multiscale IsoGeometric Design of Lattice Structures

Pablo Antolin^{*,1}, Thibaut Hirschler¹ and Annalisa Buffa^{1,2}

¹ Institute of Mathematics - Chair of Numerical Modelling and Simulation,
École Polytechnique Fédérale de Lausanne, Switzerland
[pablo.antolin, thibaut.hirschler, annalisa.buffa]@epfl.ch

² Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”,
Consiglio Nazionale delle Ricerche, Pavia, Italy

Keywords: *Lattice Structures, Design Optimization, Multiscale methods, Isogeometric Analysis.*

Using spline compositions leads to a convenient approach for the geometric modeling of (boundary-conforming) lattice structures. With this approach, the global (macro) geometry of the structure is represented employing a standard spline model. Then, reference micro-models (given as spline models too) are embedded into the macro-elements associated to the global geometry by the use of functional compositions.

Interestingly, such multi-scale geometric models are suitable for numerical simulation thanks to isogeometric analysis. This means that one unique model can be employed during design optimization [1]. However, there is a need for fast analysis methods in order to reduced the computational costs associated to these high-fidelity and high-order geometric models. To do so, we assemble the finite element operators with a multi-scale procedure [2]. Additionally, we built a specific solver based on domain decomposition methods [3]. Instead of solving one single large system, the resolution involves local problems defined over the sub-cells composing the full geometry. During both the assembly and the resolution, we exploit the similarities between these sub-cells. As a results, we end up with fast analysis methods that can be naturally integrated in a design loop. Finally, we perform several design optimization examples of innovative lattice structures in order to show the viability, the performance, and the great flexibility of the developed framework.

REFERENCES

- [1] Antolin, P., Buffa, A., Cohen, E., Dannenhoffer, J. F., Elber, G., Elgeti, S., Haimes, R. and Riesenfeld, R. Optimizing Micro-Tiles in Micro-Structures as a Design Paradigm. *Computer-Aided Design*, **Vol.** 115, pp. 23–33, (2019).
- [2] Hirschler, T., Antolin, P., and Buffa, A. Fast and multiscale formation of isogeometric matrices of microstructured geometric models. *Computational Mechanics*, (2021).
- [3] Ladevèze, P., Loiseau, O. and Dureisseix, D. A micro–macro and parallel computational strategy for highly heterogeneous structures. *International Journal for Numerical Methods in Engineering*, **Vol.** 52, pp. 121–138, (2001).