

Regularised Fracture Models Based on Representative Crack Elements

Johannes Storm¹, Michael Kaliske¹

¹ Institute for Structural Analysis, Technische Universität Dresden, 01062 Dresden, Germany, Michael.Kaliske@tu-dresden.de

Keywords: *Phase-field, Eigenfracture, Representative Crack Element*

The energetic description of a crack dates back to GRIFFITH, who has related the required energy to create a crack increment to the available potential energy in the system. A variational formulation of the crack problem

$$\mathcal{E}(\mathbf{u}, \mathcal{B}^\Gamma) = \int_{\mathcal{B} \setminus \mathcal{B}^\Gamma} \psi(\nabla \mathbf{u}) \, dV + \int_{\mathcal{B}^\Gamma} \phi([\mathbf{u}]) \, dA \rightarrow \min_{\mathbf{u}, \mathcal{B}^\Gamma} \quad (1)$$

is known as *free discontinuity problem*, where the size and location of the crack domain \mathcal{B}^Γ is unknown. Two regularisations for this problem have been developed and are applied to fracture, namely phase-field fracture [1] and eigenfracture [2].

The prediction of the crack state (opened/closed) and the forces, which can be transferred through a crack, are essential for the post-fracture behaviour but also for the calculation of the potential energy available to drive the crack. The authors have proposed to determine the deformation kinematics of a crack from discrete crack models and to couple them to the regularised fracture model by means of computational homogenisation. We have derived efficient numerical solution schemes for this *Representative Crack Models* in the context of phase-field fracture [3] and eigenfracture [4].

In this talk, we focus on the application to material and geometrical nonlinearities and we compare numerical Γ -convergence of the energy terms in Eq. (1) to common phase-field and eigenfracture models.

REFERENCES

- [1] G. Francfort and J. Marigo, Journal of the Mechanics and Physics of Solids **46**, 1319–1342 (1998).
- [2] B. Schmidt, F. Fraternali, and M. Ortiz, Multiscale Modeling & Simulation **7**, 1237–1266 (2009).
- [3] J. Storm, D. Supriatna, and M. Kaliske, International Journal for Numerical Methods in Engineering **121**, 779–805 (2020).
- [4] J. Storm, A. Qinami, and M. Kaliske, Mechanics Research Communications **116**, 103747 (2021).