

RESPONSE VARIABILITY OF COMPOSITE STRUCTURES WITH RANDOM SPATIALLY VARYING MATERIAL PROPERTIES

George Stefanou¹, Dimitrios Savvas¹, Iason Papaioannou² and Panagiotis Gavallas^{1*}

¹ Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

gstefanou@civil.auth.gr, dimitriosavvas@yahoo.gr, pgavallas@civil.auth.gr

https://www.researchgate.net/profile/George_Stefanou

² Engineering Risk Analysis Group, Technische Univ. München, 80290 München, Germany
iason.papaioannou@tum.de, <https://www.cee.ed.tum.de/era/team/iason-papaioannou/>

Key Words: *Composite Structure, Mesoscale Random Field, Parameter Uncertainty, Response Variability.*

The accurate quantification of the random spatial variation of material properties at different scales is crucial for the application of the stochastic finite element method [1]. A Bayesian framework for determining the spatial variability of the apparent material properties of two-phase composites has been presented in [2]. Bayesian analysis allowed including uncertainty in the parameters of the respective mesoscale random fields. The information from computer-simulated images was utilized to define the likelihood function of the random field parameters given the homogenized microscale data. The uncertainty in the parameter estimates was quantified through sampling from their posterior distribution. Moreover, it was shown that the exponential correlation model is the most plausible among different correlation models belonging to the Matérn family through computing their respective posterior probabilities. The above results are used in this paper to generate sample functions of the mesoscale random fields using a generator based on covariance decomposition [3] and to compute the response variability of composite structures, such as a plate in plane stress and a cantilever in bending. Parametric investigations are conducted and useful conclusions are derived regarding the effect of the identified parameter uncertainty on structural response variability.

REFERENCES

- [1] G. Stefanou, The stochastic finite element method: past, present and future. *Computer Methods in Applied Mechanics and Engineering*, Vol. **198**, pp. 1031-1051, 2009.
- [2] D. Savvas, I. Papaioannou and G. Stefanou, Bayesian identification and model comparison for random property fields derived from material microstructure. *Computer Methods in Applied Mechanics and Engineering*, Vol. **365**, pp. 113026, 2020.
- [3] B. Sudret and A. Der Kiureghian, Stochastic finite elements and reliability. A state-of-the-art report. Technical Report UCB/SEMM-2000/08, University of California, Berkeley 2000.