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Concurrent multiscale (FE2) frameworks relying on machine learning-based surrogate
modeling have become increasingly popular over the last few years. The appeal of these
approaches lies in substituting the original expensive lower-scale models embedded at
every integration point of the higher-scale mesh by surrogate models that are cheap to
compute but can still reproduce complex constitutive behavior accurately. By alleviat-
ing the main bottleneck associated with FE2, such approximate frameworks effectively
expand the applicability of the method to much a broader range of applications.

Among several different surrogate modeling techniques, Feedfoward Neural Networks
(FNN) and Recurrent Neural Networks (RNN) are by far the most popular [1]. Be-
ing universal approximators, these models can approximate arbitrarily complex material
behavior. Yet, training these surrogates often proves to be far from straightforward:
purely data-driven models cannot provide meaningful predictions outside their training
spaces, and for path-dependent materials this entails sampling from an essentially infinite-
dimensional space of arbitrarily long strain paths.

In this work, we take a step back and attempt to reintroduce classical constitutive models
into network-based surrogates. We start by defining a physics-based constitutive model
at the higher scale. However, instead of calibrating the model a priori (e.g. with numeri-
cal homogenization), we instead increase its flexibility by letting its parameters evolve in
time. This evolution is learned by casting the parameters as latent variables that evolve
through a hidden dynamics model approximated by a deep neural network. The consti-
tutive behavior is therefore given by a hybrid network composed of an FNN encoder and
a material model decoder, with classical thermodynamic internal variables (e.g. plastic
strains) accounting for path dependency. This physics-based memory and the consti-
tutive assumptions of the original model allow the hybrid network to be trained with
significantly less data than state-of-the-art RNNs and generalize better to unseen strain
paths. Moreover, the additional flexibility allows the evolving surrogate to describe more
complex behavior than the original material model.
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