

Analysis of topological derivative for qualitative identification using elastic waves

Marc Bonnet¹

¹ POEMS, ENSTA Paris, 828 boulevard des Maréchaux, 91120 Palaiseau, France

Keywords: *Topological derivative, Inverse problem, Inverse scattering, Elastic waves*

The concept of topological derivative has proved effective as a qualitative inversion tool for wave-based identification of finite-sized objects, see e.g. [5]. Although this approach is usually based on a heuristic interpretation of the topological derivative, several contributions towards its mathematical justification are available [1, 2, 3, 6, 7]. This work extends previous efforts in [2, 3], dealing with scalar wave problems, to the identification of elastic inhomogeneities embedded in elastic media interrogated by elastic waves. The data used for identification, assumed to be of near-field nature (i.e. no far-field approximation is introduced), is introduced through a misfit functional J . The imaging functional that reveals embedded inhomogeneities then consists of the topological derivative \mathcal{T}_J of J (in particular, the actual minimization of J is not performed, and therein lies the main source of computational savings relative to standard inversion based on PDE-constrained minimization). Here, the main contribution consists in an analysis of \mathcal{T}_J using a suitable factorization of the near fields, achievable thanks to a recently-available convenient reformulation of the volume integral equation formulation of the forward elastodynamic scattering problem [4]. Our results include justification of both the sign heuristics for $z \mapsto \mathcal{T}_J(z)$ (which is expected to be most negative at points z inside, or close to, the support of the sought flaw) and the spatial decay of $\mathcal{T}_J(z)$ as z moves away from the flaw support. This result, although being subject to a limitation on the strength of the inhomogeneity to be identified, provides a theoretical validation of the usual heuristic interpretation of \mathcal{T}_J as an imaging functional. Our theoretical findings will be validated and demonstrated on 3D elastodynamic computational experiments.

REFERENCES

- [1] H. Ammari, J. Garnier, V. Jugnon, and H. Kang. Stability and resolution analysis for a topological derivative based imaging functional. *SIAM J. Contr. Opt.* (2012) **50**:48–76.
- [2] C. Bellis, M. Bonnet, and F. Cakoni. Acoustic inverse scattering using topological derivative of far-field measurements-based l^2 cost functionals. *Inverse Problems* (2013) **29**:075012.
- [3] M. Bonnet, and F. Cakoni. Analysis of topological derivative as a tool for qualitative identification. *Inverse Problems* (2019) **35**:104007.
- [4] M. Bonnet. A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by Neumann series. *J. Integral Eq. Appl.* (2017) **29**:271–295.
- [5] M. Bonnet and B. B. Guzina. Sounding of finite solid bodies by way of topological derivative. *Int. J. Num. Meth. Eng.* (2004) **61**:2344–2373.
- [6] B. B. Guzina and F. Pourahmadian. Why the high-frequency inverse scattering by topological sensitivity may work. *Proc. Roy. Soc. A* (2015) **471**:20150187.
- [7] A. Wahab. Stability and resolution analysis of topological derivative based localization of small electromagnetic inclusions. *SIAM J. Imag. Sci.* (2015) **8**:1687–1717.