

ON SPACE-TIME FINITE ELEMENT APPROXIMATIONS OF THE DYNAMIC BIOT SYSTEM

Markus Bause¹, Uwe Köcher² and Florin A. Radu³

^{1,2} Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany,

bause@hsu-hh.de, koecher@hsu-hh.de, <https://www.hsu-hh.de/mbm/en/>

³ University of Bergen, Allegaten 41, 5007 Bergen, Norway, Florin.Radu@uib.no,

<https://www.uib.no/en/persons/Adrian.Florin.Radu>

Keywords: *Poroelasticity, Dynamic Biot Model, Space-Time Finite Element Methods*

The numerical simulation of the (prototype) dynamic Biot system of poroelasticity

$$\rho \partial_t^2 \mathbf{u} - \nabla \cdot (\mathbf{C} \boldsymbol{\varepsilon}(\mathbf{u})) + \alpha \nabla p = \rho \mathbf{f}, \quad (1a)$$

$$c_0 \partial_t p + \alpha \nabla \cdot \partial_t \mathbf{u} - \nabla \cdot (\mathbf{K} \nabla p) = g, \quad (1b)$$

supplemented with appropriate initial and boundary conditions, has become of importance in several branches of natural sciences and technology for analyzing experimental data or designing theories and therapies based on mathematical concepts. Thermoelasticity also offers numerous applications of the model (1). The mixed hyperbolic-parabolic character of (1) evokes substantial challenges for its reliable and efficient discretization.

A natural and promising approach for the numerical approximation of the coupled system (1) is given by the application of space-time finite element methods (cf. [1, 2, 3]) that are based on variational formulations in time and space. Here we study the approximation of (1) by families of continuous, enriched and discontinuous finite element methods in space and continuous and discontinuous approximations of the time variable within a monolithic approach. Error estimates and numerical experiments are presented.

REFERENCES

- [1] M. Bause, U. Köcher, F. A. Radu, *Convergence of a continuous Galerkin method for mixed hyperbolic-parabolic systems*, **to appear**, 2022.
- [2] M. Bause, U. Köcher, F. A. Radu, F. Schieweck, *Post-processed Galerkin approximation of improved order for wave equations*, *Math. Comp.*, **89** (2020), pp. 595–627.
- [3] M. Bause, F. A. Radu, U. Köcher, *Space-time finite element approximation of the Biot poroelasticity system with iterative coupling*, *Comput. Methods Appl. Mech. Engrg.*, **320** (2017), pp. 745–768.