

Low order fictitious domain method for FSI with enhanced stability and interfacial mass conservation

Daniele C. Corti¹, Guillaume Delay², Miguel A. Fernandez¹, Fabien Vergnet¹
and Marina Vidrascu¹

¹Sorbonne Université & CNRS, UMR 7598 LJLL, 75005 Paris – Inria, 75012 Paris,
France, daniele.corti@inria.fr, miguel.fernandez@inria.fr, fabien.vergnet@inria.fr,
marina.vidrascu@inria.fr

²Sorbonne Université & CNRS, UMR 7598 LJLL, 75005 Paris, France,
guillaume.delay@sorbonne-universite.fr

Keywords: *Fictitious domain method, fluid-structure interaction, mass conservation, Lagrange multiplier.*

Fictitious domain methods are one of the most widespread numerical schemes for the approximation of incompressible fluid-structure interaction problems with immersed thin-walled solids. Besides this popularity, these methods are also known to suffer from several inaccuracies. In particular, major mass conservation issues have to be faced when using continuous pressure approximation across the interface (see, e.g., [3]). This is particularly striking in the case of low-order finite element approximations. Several approaches have been proposed in the literature with the aim of enhancing interfacial mass conservation, such as grad-div penalty or the addition of global mass constraints (see, e.g., [2, 1]), but at the price of compromising matrix conditioning or the stability of the numerical approximation. In this work, we propose a low-order fictitious domain method which overcomes these issues. The fundamental idea consists in combining a stabilized Lagrange multiplier formulation with a global mass constraint. We also show that the latter can be formulated as a specific enrichment of the pressure space with a simple Heaviside function, which yields inf-sup stability. The behavior of the method will be illustrated through several numerical experiments motivated by heart valve simulations.

REFERENCES

- [1] T. Hisada, T. Washio, Mathematical considerations for FSI simulation of heart valves, *Bulletin of the Japan Society for Industrial and Applied Mathematics*, 16(2), 142–156, 2016 (in Japanese).
- [2] D. Kamensky, J.A. Evans, et al., Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis, *Commun. Comput. Phys.*, 18(4), 1147–1180, 2015.
- [3] L. Boilevin-Kayl, M. A. Fernández, et al., Numerical methods for immersed FSI with thin-walled structures. *Computers & Fluids*, 179, 744–763, 2019.