

Polytopal nonconforming discretization methods for multiple-network poroelasticity and thermo-poroelasticity

Paola Antonietti¹, Stefano Bonetti², Michele Botti^{*3}, and Daniele Di Pietro⁴

¹ Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy,
paola.antonietti@polimi.it

² Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy,
stefano.bonetti@polimi.it

³ Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy,
michele.botti@polimi.it

⁴ Université de Montpellier, Place Eugène Bataillon, 34095 - Montpellier, France,
daniele.di-pietro@umontpellier.fr

Keywords: *discontinuous Galerkin methods, hybrid high-order methods, poromechanics, polygonal grids, robust estimates*

Poromechanical modeling is relevant in several geoscience applications, including waste disposal, injection-production cycles in geothermal fields, and CO₂ storage. In this talk, we focus on the numerical analysis of polytopal discontinuous Galerkin (PolyDG) and Hybrid High-Order (HHO) schemes for poroelasticity problems. In particular, we address the multiple-network poroelasticity model [1] describing seepage through deformable fissured media and the quasi-static thermo-poroelasticity problem [2] modeling the interaction among heat, fluid flow, and elastic deformation. The proposed methods are designed to support polygonal and polyhedral elements. This is a key feature in geological modeling in order to handle fractures and degenerate elements arising in the case of compaction or erosion. As a starting point for the design of the numerical schemes, we adopt a weak formulation with an additional total pressure variable ensuring inf-sup stability. The resulting methods support arbitrary-order approximations on general meshes and deliver error estimates that are robust in the entire range of geophysical parameters and rest on mild regularity assumptions. A wide set of numerical results are presented to validate the error analysis and investigate the robustness of the method.

This research work has been funded by the European Commission through the H2020-MSCA-IF-EF project PDGeoFF (Grant no. 896616).

REFERENCES

- [1] M. Botti, L. Botti, and D.A. Di Pietro, *A Hybrid High-Order method for multiple-network poroelasticity*. in SEMA-SIMAI: Polyhedral Methods in Geosciences, pp. 227–258, Springer, 2021.
- [2] M.K. Brun, E. Ahmed, J.M. Nordbotten and F.A. Radu *Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport*. J. Math. Anal. Appl. 471:1, pp. 239-266, 2019.