

DIURNAL CYCLES OF SLOPE WINDS WITH OPENFOAM

Adeline Montlaur^{1*}, Rathan B. Athota¹, Santiago Arias¹ and Jose I. Rojas¹

¹ Department of Physics - Division of Aerospace Engineering, Universitat Politècnica de Catalunya, c/ Esteve Terradas, 7, 08860 Castelldefels, Spain
adeline.de.montlaur@upc.edu, rathan.babu.athota@upc.edu, santiago.arias@upc.edu,
josep.ignasi.rojas@upc.edu

Key Words: *thermal wind, diurnal cycle, slope, mountain, valley, anabatic, katabatic, OpenFOAM.*

Thermal winds arise due to the changes of local temperature gradients and buoyancy along slopes occurring during the diurnal cycle. Katabatic (down-slope) winds are of interest since they can have implications on air quality, when possibly returning pollutants downward, whereas anabatic (up-slope) ones play an important role in the exchange process between the lower and the upper atmosphere layers. Additional interest in slope winds can be found for wind energy applications. This rapidly growing sector can find advantages in thermal winds since, for example, they present more regularity than synoptic ones, and they may avoid the impact of increased turbulence on turbines. Slope flows have been studied for many decades [1], from analytical theory to numerical simulations, and very recently they have risen interest in the open-source computational fluid dynamics software community, with some works completed using OpenFOAM, studying uniformly heated slope [2], or applying steady altitude-dependent temperature boundary conditions on the slope [3, 4].

In this work, OpenFOAM's solver *buoyantBoussinesqPimpleFoam* is used to study thermal wind generation on an idealized numerical model of a mountain-valley system. Diurnal cycles are simulated for different temperature gradients and mountain slope angles, in order to replicate various topographic and climate environments. The influence of the chosen turbulence models is discussed, a comparison of their respective computational times is included. Results of velocity profiles, turbulence kinetic energy and position of possible vortices/convective cells are presented, aiming at assessing the possible use of slope flows to wind energy generation.

REFERENCES

- [1] J. Finnigan *et al.*, Boundary-Layer Flow Over Complex Topography. *Boundary-Layer Meteorology*, Vol. **177**, pp. 247–313, 2020.
- [2] C. Cintolesi *et al.*, Anabatic Flow along a Uniformly Heated Slope Studied through Large-Eddy Simulation. *Atmosphere*, Vol. **12**, 850, 2021.
- [3] R.B. Athota *et al.*, OpenFOAM computational fluid dynamics simulations of thermal wind generation in mountain/valley configurations, in *14th WCCM and ECCOMAS Congress 2020* (Virtual congress, 2021).
- [4] R.B. Athota *et al.*, Simulations of Thermal Wind Formation in Idealised Mountain-Valley Systems Using Openfoam. Available at SSRN: <https://ssrn.com/abstract=4086430> or <http://dx.doi.org/10.2139/ssrn.4086430>.