

DATA-BASED INELASTIC CONSTITUTIVE MODELS IN THE FRAMEWORK OF COSSERAT RODS

Davide Manfredo^{1,2*}, Vanessa Dörlich¹, Joachim Linn¹ and Martin Arnold²

¹ Fraunhofer ITWM, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany,
[davide.manfredo, vanessa.doerlich, joachim.linn]@itwm.fraunhofer.de

² Institute of Mathematics, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str. 5,
06120 Halle (Saale), Germany, martin.arnold@mathematik.uni-halle.de

Keywords: *Cable Simulation, Cosserat Rods, Inelastic Cable Properties, Data-Based Constitutive Modeling, Hysteresis Operators*

As shown in [1], cables are often modeled in terms of Cosserat rods, since this theory represents a versatile and self consistent tool to describe large spatial deformation of slender structures under the effect of small local strains.

When performing bending experiments with electric cables, inelastic complex behavior arises due to the multimaterial composition of such objects and hysteretic loops occur, with noticeable difference between the first loading cycle and the following ones [2].

Our approach aims at modeling effective inelastic constitutive behavior described using hysteresis operators [3], whose parameters are derived from measured data. One of the main features of this mathematical tool is represented by its versatility and the fact that not too many *a priori* assumptions with regard to material properties are required.

In this contribution, first steps to include a history dependent constitutive law expressed as hysteresis operators into a Cosserat rod model are made, and first simulation results are shown.

ACKNOWLEDGMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860124.

REFERENCES

- [1] Linn, J. and Dreßler, K. Discrete cosserat rod models based on the difference geometry of framed curves for interactive simulation of flexible cables. *European Consortium for Mathematics in Industry -ECMI-: Math for the Digital Factory*, pp. 289-319 (2017).
- [2] Dörlich, V., Linn, J. and Diebels, S. Flexible Beam-Like Structures - Experimental Investigation and Modeling of Cables. In: Altenbach, H. et al. *Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials*. Springer International Publishing (2018) **80**: 27 – 46.
- [3] Brokate, M. and Sprekels. J. *Hysteresis and Phase Transitions (First Edition)*. Springer-Verlag New York, (1996).