

A framework for upscaling and modelling fluid flow for discrete fractures using conditional generative adversarial networks

Carlos A. S. Ferreira¹, Teeratorn Kadeethum^{2,3}, Nikolaos Bouklas^{3,4} and Hamid M. Nick¹

¹ Danish Offshore Technology Centre, Technical University of Denmark, Denmark

² Sandia National Laboratories, New Mexico, USA

³ Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA

⁴ Center for Applied Mathematics, Cornell University, USA

Keywords: *Fractured porous media, Permeability tensor, Permeability anisotropy, Reduced order modelling*

This work follows up the adaptation and application of conditional generative adversarial networks (CGAN) to the solution of partial differential equations, for the scaling up of highly heterogeneous aperture distributions of fractures into equivalent permeability tensors. The upscaled equivalent tensor enables a substantial reduction in the computational cost of simulating fluid flow in fractured porous media by allowing the employment of coarser grids while keeping the accuracy of an explicit model. However, this procedure becomes expensive in case multiple fractures are observed, which is the case of naturally fractured rocks. To accelerate the scaling-up, this work proposes the employment of CGAN for the solution of the fluid flow inside the fracture. CGAN have previously shown to handle well the parametrization of heterogeneous material properties and providing accurate solutions. Three different types of aperture distributions are used as input in this work: layered media, Zinn & Harvey transformation and self-affine fractal. As output, the model predicts the pressure inside the fracture which is used for calculation of the equivalent permeability tensor. Our results show that the framework employing CGAN provides equivalent tensors that are highly accurate, compared to the ones obtained via a traditional framework.

REFERENCES

- [1] H.M. Nick and K. Bisdom, Fracture Aperture in Flow Models: to Average, or not to Average? *European Association of Geoscientists & Engineers*, Vol. **2018**, pp. 1–4, 2018.
- [2] I. Berre, F. Doster and E. Keilegavlen, Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. *Transport in Porous Media*, Vol. **130**, pp. 215–236, 2019.
- [3] T. Kadeethum, D. O’Malley, J. N. Fuhr, Y. Choi, J. Lee, H. S. Viswanathan and N. Bouklas, A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks. *arXiv*, 2021.