

Random field modelling of local strength in randomly arranged unidirectional FRP plate under transverse tensile loading

S. Sakata¹, G. Stefanou², S. Tanimasu³ and S. Araki³

¹ Kindai University, 5788502 Osaka, Japan, sakata@mech.kindai.ac.jp

² Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece, gstefanou@civil.auth.gr

³ Graduate School of Kindai University, 5788502 Osaka, Japan, araki.kindai@gmail.com

Key Words: *FRP, Random Field Modelling, Strength, Probabilistic Analysis.*

In this paper, random field modelling of the local strength in a unidirectional fiber reinforced plastic (FRP) plate under a tensile load toward the transverse direction is discussed.

Composite materials have been widely used in industry due to their superior specific stiffness and strength. Apparent material properties of those materials are strongly influenced by their microstructure. Furthermore, some microscopic features cannot be perfectly controlled, and microscopic randomness should be considered in apparent material property estimation for the safe design of composite structures.

For this problem, stochastic homogenization ^{[1][2]}, multiscale stochastic stress analysis ^[3] and random field modelling ^[4] for composite materials have been noted. Estimation of the uncertainty propagation through the different scales and identification of the microscopic random field will play a very important role for numerical analysis of composite structure considering multiscale randomness / uncertainties. In particular, random dispersion of the apparent strength will be one of disadvantages of composites, and it should be precisely estimated for more reliable design.

In view of the above, numerical analyses are performed for evaluating the local strength in microscale of the FRP plate, and distribution of the local strength is identified. The numerical model is constructed from a SEM image, and the random field of local strength at each location is modelled by the moving window technique. The estimated random fields obtained from the analysis considering different boundary conditions are also compared in terms of their statistical characteristics, and validity of the results is discussed.

REFERENCES

- [1] M. Kaminski and M. Kleiber, Perturbation based Stochastic Finite Element Method for Homogenization of Two-phase Elastic Composites. *Comput. Struct.*, Vol. **78**, pp. 811–826, 2000.
- [2] S. Sakata, F. Ashida, T. Kojima and M. Zako, Three-dimensional Stochastic Analysis using a Perturbation-based Homogenization Method for Homogenized Elastic Property of Inhomogeneous Material considering Microscopic Uncertainty, *Int. J. Solids. Struct.*, Vol. **45**(3/4), pp. 894-907, 2008.
- [3] S. Sakata, T. Sakamoto, A Local Sensitivity-Based Multiscale Stochastic Stress Analysis of a Unidirectional Fiber-Reinforced Composite Material Considering Random Location Variation of Multifibers. *ASCE-ASME J. Risk. Uncertain. Eng. Syst., Part B: Mech. Eng.*, Vol. **5**(3), pp. 030902-1-12, 2019.
- [4] G. Stefanou, D. Savvas and M. Papadrakakis, Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties. *Comput. Methods. Appl. Mech. Eng.*, Vol. **326**, pp. 319-337, 2017.