

Machine Learning driven prediction model for strength reduction of fire-damaged RC column based on numerical analysis

Hyun-Kyoung Kim^{1*}, Hyo-Gyoung Kwak² and Ju-Young Hwang³

¹ Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, khk0723@kaist.ac.kr

² Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, kwakhg@kaist.ac.kr

³ Dept. of Civil Engineering, Dong-Eui University, 176 Eomgwangno, Busanjin-gu, Busan, Republic of Korea, agree.hwang@deu.ac.kr

Key Words: *Reinforced-concrete, Fire exposure, Non-mechanical Strain, Machine Learning, XGB, LGBM*

Fire analysis so far was been conducted by taking into consideration all the fire-affected variables such as non-mechanical strain, material properties, or stress-strain relation depending on the temperature. This approach has clear theoretical background, though its accessibility is low. To improve accessibility to fire analysis, this thesis proposes a machine-learning driven prediction model for strength reduction of fire-damaged RC column, with FEM fire analysis dataset.

The FEM dataset is consisted of P-M strength reduction with fire-exposure time for 1770 RC section samples. Since strength of RC element gets smaller as fire lasts, decision-tree based ML model XGB and LGBM was adopted, which gives monotone increasing/decreasing constraints with chosen feature. The proposed model was evaluated its performance based on P-M diagram comparison of FEM and predicted one, and it was found to achieve mean fitness under 5%.

REFERENCES

- [1] J. Y. Hwang, and H. G. Kwak, “A numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis” Journal of Computational Structural Engineering Institute of Korea, 2015
- [2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, “LightGBM: A Highly Efficient Boosting Decision Tree” NIPS 2017