

On the invariant subspaces of deep learning-based reduced order models in MEMS

Gobat Giorgio¹, Fresca Stefania², Opreni Andrea¹, Manzoni Andrea² and Frangi Attilio^{1*}

¹ Department of Civil and Environmental Engineering, Politecnico di Milano, Italy,
Piazza Leonardo da Vinci, 32, 20133, Milano MI, giorgio.gobat@polimi.it,
<https://www.dica.polimi.it/>

² MOX, Department of Mathematics, Politecnico di Milano, Italy, Via Edoardo Bonardi,
9, 20133, Milano MI, stefania.fresca@polimi.it, <https://mox.polimi.it/>

Keywords: *Deep learning, Model Order Reduction, MEMS, Invariant Manifold*

Nonlinear modelling in structural mechanics has received an impressive boost recently thanks to the increasing availability of computational resources and applications to Micro-Electro-Mechanical-Systems (MEMS) dynamics. In order to identify the optimal MEMS geometry and operative conditions, designers cannot resort to standard simulation techniques, e.g. Finite Element (FE) Method, because of the long computational time, thus Reduced Order Models (ROMs) are used. A reliable ROM should guarantee that the underlying subspace is invariant, i.e. trajectories started on the manifold remain on it during the whole dynamics process. The computation of invariant manifolds in most systems represents an open problem. To overcome such limitations data-driven ROMs, in particular, Deep Learning-based ROMs (DL-ROMs) [1, 2] provide a general way to simulate the dynamics. Nevertheless on DL-ROMs little or no investigations were performed to check whether the identified subspace guarantees the aforementioned invariance property. In this contribution, we propose an in-depth investigation comparing the solution achieved by the DL-ROM proposed in [1] with the invariant manifold identified through the Direct Parametrization for Invariant Manifolds (DPIM)[3], referring to large scale models from MEMS industry e.g. micromirrors. In our benchmarks, we retrieve that the DL-ROM identified invariant subspaces well represent the DPIM one.

REFERENCES

- [1] S. Fresca, and A. Manzoni., POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. *Computer Methods in Applied Mechanics and Engineering*, Vol. **388**, 2022
- [2] S. Fresca, et al., Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. *arXiv preprint*, arXiv:2111.12511, 2021.
- [3] A. Opreni, et al., Model order reduction based on direct normal form: application to large finite element MEMS structures featuring internal resonance. *Nonlinear Dyn.*, Vol. **105**, pp. 1237–1272, 2021.