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1 Introduction 

Portland-limestone cements, developed as alternative to ordinary Portland cement, are 
characterized by competitive properties and lower environmental impact, however, they are 
susceptible to the thaumasite sulfate attack (TSA). A model predicting the mechanical 
properties of cementitious materials exposed to conditions facilitating TSA would allow for 
optimizing concrete formulation in terms of durability and environmental impact. To this aim, 
this study is focused on obtaining necessary data about microstructure and strength. 

2 Experimental 

Portland-limestone cement paste (water-to-cement ratio of 0.45) cylinders (d=20 mm; h=50 
mm) were produced with a commercial CEM II/B-LL cement, and immersed in MgSO4 solution 
(S) (20 g/L SO4

2─ content), and water (W) as reference, at 5 °C. The number of specimens used 
in each test for each exposure environment and storage period are shown below in brackets. 
Pore structure and deterioration characteristics were assessed with X-ray micro-computed 
tomography (1). Structural parameters (porosity, ϕ; specific surface area of pores, Sv; mean 
curvature of pores, Mv) were extracted by analyzing appropriate volumes of interest. Structural 
characteristics were correlated with compressive strength (5). Phase changes were investigated 
with X-ray powder diffraction and 29Si MAS NMR spectroscopy (1 for W and 8 for S). 

3 Results 

Sulfate attack evolved through the formation of concentric crack patterns, followed by 
expansion and detachment of the damaged part of the specimen that was in direct contact with 
the corrosive solution. The average values of structural parameters, derived from quantitative 
image analysis of tomographic images, indicated a similar microstructure for the sound part of 
the specimens exposed to W (ϕ = 0.53%, Sv = 0.91 mm─1, Mv = 227.39 mm─2) and S (ϕ = 0.65%, 
Sv = 1.75 mm─1, Mv = 373.37 mm─2) solutions. This suggested a front-like deterioration, moving 
from the surface towards the center of the specimen, and resulting in rapid decline of structural 
integrity and relative compressive strength (76% decrease at 3.5 months). 
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Figure 1. Left: Cross sectional XmCT images of specimens exposed to magnesium sulfate solution for 3 months 
(left) and 4 months (right); white arrows indicate cracks formed due to sulfate attack. – Right: 29Si MAS NMR 

spectra collected at 4 and 5 months for specimens stored in water (a) and for samples obtained from the 
deteriorated surface of specimens exposed to magnesium sulfate solution (b). Black curves: experimental 

spectra; Colored curves: deconvoluted spectra (─72 ppm: Q0; ─74, ─76 and ─79 ppm: Q1; ─82 ppm: Q1(1Al); 
─85 ppm: Q2; ─88 ppm: Q2

u; ─91 ppm: Q3(1Al); ─179 ppm: SiO6). 

X-ray powder diffraction data indicated the participation of limestone in cement hydration 
(decrease in calcite content ─ formation of carboaluminate hydrates). During sulfate attack, 
thaumasite, ettringite and gypsum formed at the expense of portlandite, calcite and 
monocarboaluminate hydrate; reduced amorphous content with time evidenced C─S─H 
deterioration. One-pulse 29Si MAS NMR spectra indicated that sulfate attack promoted the 
polymerization of the silicate chains in C─S─H phase and led to the formation of condensed 
aluminosilicate structures, as a consequence of C─S─H deterioration.  
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