ADAPTIVE RANDOM FOURIER FEATURES BASED ON METROPOLIS SAMPLING

<u>Aku Kammonen</u>^{1*}, Jonas Kiessling^{2, 3}, Petr Plecháč⁴, Mattias Sandberg³, Anders Szepessy³, Raúl Tempone^{1, 2}

¹KAUST, Saudi Arabia ²RWTH, Aachen, Germany ³KTH, Stockholm, Sweden ⁴University of Delaware, Newark, DE 19716, USA

* akujaakko.kammonen@kaust.edu.sa

The supervised learning problem to approximate a function $f: \mathbb{R}^d \to \mathbb{R}$ by a neural network approximation $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^K \hat{\beta}_k e^{\mathrm{i}\omega_k \cdot x}$ with one hidden layer is studied as a random Fourier features algorithm. Here the mean square loss problem can be solved easily, since it is convex in the amplitude parameters $\hat{\beta}_k$ given a density $p: \mathbb{R}^d \to [0,\infty)$ for independent frequencies ω_k . It is also well known that the corresponding generalization error is bounded by $K^{-1} \||\hat{f}|^2/p\|_{L^1(\mathbb{R}^d)}$, where \hat{f} is the Fourier transform of f. In this talk I will first show how the constant $\||\hat{f}|^2/p\|_{L^1(\mathbb{R}^d)}$ can be minimized by optimally choosing the density p and then how to approximately sample from this density, only using the data and certain adaptive Metropolis steps. I will also present computational experiments including deep residual networks.

References

- [1] Adaptive random Fourier features with Metropolis sampling, by A. Kammonen, J. Kiessling, P. Plecháč, M. Sandberg, A. Szepessy. In on Foundations of Data Science, 2(3): 309--332, 2020.
 - [2] Smaller generalization error derived for a deep residual neural network compared to shallow networks, by Aku Kammonen and Jonas Kiessling and Petr Plecháč and Mattias Sandberg and Anders Szepessy and Raúl Tempone, arXiv, 2021, eprint 2010.01887