SMALLER GENERALIZATION ERROR DERIVED FOR A DEEP RESIDUAL NEURAL NETWORK COMPARED TO SHALLOW NETWORKS

Aku Kammonen¹, Jonas Kiessling^{2,3}, Petr Plecháč⁴, Mattias Sandberg³, <u>Anders Szepessy³</u>*, Raúl Tempone^{1,2}

¹KAUST, Saudi Arabia ²RWTH, Aachen, Germany ³KTH, Stockholm, Sweden ⁴University of Delaware, Newark, DE 19716, USA

* szepessy@kth.se

Residual networks were introduced to improve the training of deep neural networks. Can they also be shown to be more accurate? In this talk I will present a theorem which shows that approximation of a function $f:\mathbb{R}^d\to\mathbb{R}$ by a residual neural network with L random Fourier features layers $\bar{z}_{\ell+1}=\bar{z}_{\ell}+\operatorname{Re}\sum_{k=1}^K\bar{b}_{\ell k}e^{\mathrm{i}\omega_{\ell k}\bar{z}_{\ell}}+\operatorname{Re}\sum_{k=1}^K\bar{c}_{\ell k}e^{\mathrm{i}\omega'_{\ell k}\cdot x}$ has smaller generalization error than the classical estimate $\|\hat{f}\|_{L^1(\mathbb{R}^d)}^2/(KL)$ of the generalization error for random Fourier features with one hidden layer and the same total number of nodes KL, in the case the L^∞ -norm of f is much less than the L^1 -norm of its Fourier transform \hat{f} . I will also present related numerical results.

References

- [1] Adaptive random Fourier features with Metropolis sampling, by A. Kammonen, J. Kiessling, P. Plecháč, M. Sandberg, A. Szepessy. In on Foundations of Data Science, 2(3): 309--332, 2020.
 - [2] Smaller generalization error derived for a deep residual neural network compared to shallow networks, by Aku Kammonen and Jonas Kiessling and Petr Plecháč and Mattias Sandberg and Anders Szepessy and Raúl Tempone, arXiv, 2021, eprint 2010.01887