Thermodynamic consistency of data-driven computational mechanics

David González†, Francisco Chinesta‡† and Elias Cueto‡

† Aragon Institute of Engineering Research, Universidad de Zaragoza
Maria de Luna s/n, 50018 Zaragoza, Spain
*e-mail: beam@unizar.es

‡† ESI Chair and PIMM Lab. ENSAM ParisTech
151 Boulevard de l'Hôpital, 75013 Paris, France

ABSTRACT

We review here the general conditions for a sound thermodynamical treatment of data-driven computational mechanics approaches. In particular, we review the effects of the chosen coarse-grained scale at which the experiments are designed, and how this could affect on the obtained simulation results. Different strategies will be analyzed which show the potentialities of the developed method.

REFERENCES