A multicomponent kinematic hardening model with sequential distortional hardening

René Marek*, Jiří Plešek* and Yannis F. Dafalias†

* Institute of Thermomechanics of the Czech Academy of Sciences
Dolejškova 1402/5, 182 00 Prague 8, Czech Republic
E-mail: marek@it.cas.cz - Web page: http://www.it.cas.cz/en/

† University of California Davis (UC DAVIS)
One Shields Avenue, Davis, CA 95616, USA
Email: jfdafalias@ucdavis.edu - Web page: https://www.ucdavis.edu/

ABSTRACT

A new model focused on transitional states of distortion of the yield surface is proposed. Yield surface shapes detected in [1] strongly suggest that distinct directions of distortion are present. In this particular case, they are emphasized by mutual orthogonality of the parts of the prestress sequence, which limits mutual influence. A new distortional transformation is derived, that enables its multiple application on top of each other. Rather than assigning a single distortion to a recognized section of prestress history, the backstress components evolve in a more natural way, creating an innate hierarchy. Components already evolved in orthogonal direction to the plastic flow are less accepting of change. A strong focus is put on a smooth elastic-plastic transition and on equivalent plastic strain distribution surrounding the yield surface, as it represents the extension of the effect of yield surface distortion.

REFERENCES


ACKNOWLEDGEMENTS

This work was supported by the Grant projects with No. GA19-03282S of the Czech Science Foundation (CSF), within institutional support RVO:61388998, by the Ministry of Education, Youth and Sports of the Czech Republic under grant program INTER-EXCELLENCE, subprogram INTER-ACTION, Grant No. LTAUSA18199, and by the Centre of Excellence for Nonlinear Dynamic Behaviour of Advanced Materials in Engineering CZ.02.1.01/0.0/0.0/15_003/0000493 (Excellent Research Teams) in the framework of Operational Programme Research, Development and Education.