Efficient Numerical Implementation of Length-Scale Dependent Polycrystal Plasticity Theories

Paul Christodoulou*, Ricardo Lebensohn*, Irene Beyerlein†, Alan Needleman+

* Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
e-mail: lebenso@lanl.gov

† Mechanical Engineering Department and Materials Department, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
e-mails: pchristodoulou@ucsb.edu, beyerlein@engineering.ucsb.edu

‡ Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
e-mail: needle.tamu@gmail.com

ABSTRACT

We present the numerical implementation of non-local polycrystal plasticity theories using an elasto-viscoplastic (EVP) Fast Fourier Transform (FFT)-based formulation [1]. Numerical procedures for the accurate estimation of higher-order derivatives of micromechanical fields are identified and applied to calculate Geometrically-Necessary Dislocations (GND) density fields [2]. The separate and combined effects of GNDs on energetic and dissipative hardening are studied. The new formulation is first used to solve a periodic laminate made of two crystals to assess the soundness and stability of the proposed algorithms, and next applied to 3-D fcc polycrystals, illustrating the computation of meaningful non-local polycrystal plasticity solutions of large problems in reasonable times. Moreover, the presence of porosity and its evolution in a polycrystalline matrix [3] is combined with the aforementioned non-local plasticity theories.

REFERENCES

