PATIENT SPECIFIC BIOMECHANICS MODELING AND SIMULATION

400, 700, 1800, 1900

RICARDO R. BAIER 1 , OLGA BARRERA 2 , STÉPHANE P. A. BORDAS 3 , STÉPHANE COTIN 4 , KENNY ERLEBEN 5 , JAVIER LLORCA 6 , JOSÉ A. RODRIGUES 7 , MICHAEL SACKS 8

		¹ Mathematical Institute,
		University of Oxford
		ruizbaier@maths.ox.ac.uk
		4

² Engineering Department, University of Oxford obarrera@brookes.ac.uk

- ³ University of Luxembourg and Cardiff University stephane.bordas@uni.lu
- ⁴ MIMESIS -INRIA Strasbourg stephane.cotin@inria.fr
- ⁵ Department of Computer Science University of Copenhagen kenny@di.ku.dk

- ⁶ Polytechnic University of Madrid and IMDEA Materials Institute javier.llorca@imdea.org
- ⁷ Department of Mathematics High Institute of Engineering of Lisbon - ISEL irodrigues@adm.isel.pt
- ⁸ Oden Institute for Computational Engineering and Sciences, University of Texas at Austin msacks@oden.utexas.edu

Key words: Contact Mechanics, Multi-Scale Modeling, Non-Linear Problems, Optimization, Stochastic Problems.

ABSTRACT

Human diseases can be defined as a condition, state or process occurring in the body that not only impairs the bodily structures and functions but also threatens the health and well-being. A disease not only causes biological and functional alterations but also results in abnormalities in the physical and structural characteristics of cells or physiological systems. Currently the human health sustainability is mainly achieved through innovation and implementation into practice of novel methods.

This symposium aims at discussing and presenting researchers works as well to create new connections within the international community.

The main technical research directions include:

- Real-time simulation in biomedicine and acceleration techniques
- Contact mechanics and fracture mechanics of soft tissue
- Data-driven model selection and parameter identification (Bayesian, artificial intelligence and stochastic approaches)
- Image registration
- Uncertainty quantification: forward and inverse stochastic problems
- Model order reduction for non-linear problems
- Multi-scale modeling of biological tissues
- In vivo experimental methods in biomechanics
- Microscopy and micro-structurally faithful modeling

- Middle-ware and open source software to accelerate
- Bone remodeling.

The main application areas include:

- Hip biomechanics
- Dental biomechanics
- Spinal biomechanics
- Biodegradable implants and new Magnesium-based alloys
- Breast cancer and treatment
- Cardiovascular device optimization
- The fusion of intraoperative data for surgical guidance
- Patient-specific simulation of cutting
- Design of phantoms
- Biomechanics of the meniscus and the knee.

With this Symposium, we focus at works on envisions next-generation biomechanics simulation or optimization tools for a personalized clinical design that is rapidly set up for an individual patient, in particularly we focus at the researchers works from RAINBOW ITN (https://rainbow.ku.dk) as well as the partners from the H2020 TWINNING DRIVEN Project (https://2020driven.uni.lu), and will include presentations from the FNR DRIVEN PRIDE DTU Project on Data-Driven Modelling and Simulation (https://driven.uni.lu) with the goal to disseminate research results, create new links with other projects and with the wider research community.

REFERENCES

- [1] K. Erleben, "Methodology for assessing mesh-based contact point methods". *Acm Transactions On Graphics 2018*, presented at SIGGRAPH (2018).
- [2] K. Erleben and S. Andrews, "Solving inverse kinematics using exact hessian matrices", *Computers & Graphics*. Vol **78**, pp. Pages 1-11, (2019).
- [3] A. Granados, et al., "A numerical strategy for finite element modeling of frictionless asymmetric vocal fold collision", *Int. J. Numer. Meth. Biomed. Engng.*, Vol **33**, pp. e02793, doi: 10.1002/cnm.2793 (2017).
- [4] P. Hauseux, et al., "Uncertainty Quantification in Finite Element Models: Application to SoftTissue Biomechanics", 13th World Congress in Computational Mechanics (WCCM XIII), http://hdl.handle.net/10993/36504, (2018).
- [5] M. Macklin et al., "Non-smooth newton methods for deformable multi-body dynamics", *Acm Transactions On Graphics 2019*, will be presented at SIGGRAPH (2019).
- [6] H. Rappel, et al., "A tutorial on Bayesian inference to identify material parameters in solid mechanics" Arch Computat Methods Eng., pp 1-25, doi: 10.1007/s11831-018-09311-x, (2019)
- [7] R. Schmidtke and K. Erleben, "Chunked bounding volume hierarchies for fast digital prototyping using volumetric meshes", *IEEE Transactions On Visualization And Computer Graphics*, Vol. 24(12), pp. 3044 3057, (2018).